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ClIAP'ER I

I NTRIDUCT ION

1.1 Task Hlistory

The research effort reported here was performed in the Digital Signal

Processing Laboratory of the School of Electrical Engineering at the Georgia

Institute of Technology. In this effort, the Georgia Institute of Technology

was the prime contractor and the Dynastat Corporation of Austin, Texas operated

as a subcontractor. The monitoring officer at the Defense Communications

Engineering Center was Mr. Kenneth Fischer.

This task, which sought to develop new compactly computable objective

measures for the prediction of subjective quality asscssments of speech coding

systems, followed previous work by both Georgia Tech [1.1-1.13] and the

Dynastat Corp. [1.51 [1.14] [1.15] in relate areas. In this study, all of the

research work was performed at Georgia Tech, while the Dynastat Corporation's

sole function was to perform the required subjective quality evaluations.

1.2 Technical Background

*J
In recent years. considerable effort has been devoted to the development

of efficient digital speech coding algorithms for the transmission and storage

of speech signals. These algorithms represent a wide range of approaches to .2

the speech coding problem, and a correspondingly wide range or data rates.

computational intensities, and perceived distortion characteristics. At the

high data rates, such simple systems as mu-law and A-law PCM coders operate .
Ii

with toll quality at around 64K bps. At intermediate rates (32K bps-9.GK bps)

such systems as D)M 1. 161, AI)M fl• -.171lf 1 8, DI'CM [1.19], ADI'CM [I.,0], A2GC

I1.1], SI3C 11.22], and A'C [ .23][1 .241 are currently being used and propos'd_

In addition 'gapped analysis' 11.20111.2b] or 'harmonic scaling' 11.26] is also

-1
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effective in reducing bit rates in this range. At the lower data rates (2.4K

bps-200 bps), fixed rate pitch excited LPC [1.27-1.291 and channel [1.30-1.32]

vocoders are being used, and variable rate [1.33][1.34], vector quantized

[l.3b][1.36], and recognition/synthesis [1.37][1.38) systems are being

proposed. In addition, considerable progress is now being made in th, 0.6-2.4K

bps range by such techniques as noise feedback [1.39] and run-length-coding

[1.40] in APC and parametric excitation representations in residual excited

vocoders [1.41][1.42].

The problem of rating and comparing these systems from the standpoint of

user acceptance is a difficult one, since the candidate systems are usually

highly intelligible. Hence, context free inteiligibility tests such as the D)'r

[1.47] and the MRT [1.48] may not suffice to resolve small differences in

acceptability. User preference tests, such as tbh' PAIRM [1.5]1, the QAiRT

[!.15], and the more modern DAM [1.16] can be effective in assessing quality,

but they all suffer from the inherent drawbacks of subjective tests. These

include both the great care which must be exercised to obtain repcatable

subjective results and the corresponding expense and lack of flexibility .-

associated with such testing.

Objective acceptability measurcs. on the other hand, do not suffer from

many of the problems of subjective tests [1.1-1.13]. On the whole, they arc

cisy to administer and many have proved to be very reliable [l1.b]. Likewise,

many objective measures can be implemented in real-time or ncar-real-Limc,

which vastly extends their flexibility. Also, objective measures may often be

used directly in the design of speech coding systems in ways which arc not 4

possible with subjective measures.

The problem is that it would be n!.ive . _'.eve that any simple,

compactly computable objective measure could ,.. designed which would

always correlate well with subjective quality results across a larpe ensemble

a



of coding and other distortions. Despite our poor understanding of the speech

perception process at present. we can assuredly state that the human listener

is an active perceiver who uses his immense knowledge of the language, the

talker, and the semantic and syntactic context to 'fill in the gaps' in the

perceived speech. Hence, it is clear that no objective measure which does not

use semantic, syntactic, and talker related information can ever be expected to

"" perform well across all possible speech distortions, and such measures are

clearly not possible with our current knowledge. On the other hand, it is fair

to say that with the possible exception of very low bit rate

recognition/synthesis systems, the distortions found in speech coding systems

are not synchronized with the semantic, syntactic, or talker related features
I

of the speech signal.

The challenge in the design of compactly computable objective measures is

hence to realize maximum utility from a set of intrinsically imperfect

* procedures. Until recently, the relative performance of different objective

' measures in terms of their ability to predict subjective quality results has

not been well understood. However, in a recent study funded by the Defense

* Communications Agency (DAI00-78-C-003) [1.5] and later by the National Science

Foundation (ECS-801-6712) the relative performances of many objective speech

quality measures have been addressed in detail [1.1-1.13]. In many ways, thc

research which is being reported in this document can be considcred to be a

continuation of these studics.

1.3 The Technical Approach

In the earlier research, the emphasis was ort comparing and quantifying the

performance of a large number of parametric variations of simple objective

measures. The basic methodology employed in both the earlier research and in
U

this research, which is based on correlation analyses between objective and

3



subjective speech quality measures applied across a large ensemble of coded and

distorted speech, is described in detail in Chapter 2 of this report. At

onset of this research, about 2000 objective measures had been studied using

about 140,000 individual correlation analyses.

The experimental and research environment developed in the previous

research efforts offers a unique opportunity for the design, implementation,

and evaluation of new, more complex objective speech quality measures. On the

one hand, the body of the research performed over the last five years has

provided a good understanding of the relative performance of a large number of

individual objective measures. On the other hand, the experimental environment

itself both offers an efficient method for testing objective measures and also '_ i

represents an outstanding resource for the design of new objective measures.

In this context, the goal of this research was to use the existing resources to

maximum advantage in developing and evaluating a new set of objective measures

for the efficient prediction of the user acceptance of speech coding systems.

Two particular application areas for objective quality measures arc

particularly appropriate to the concerns of the Defense Communications Agency.

The first is the area of designing devices for field testing the performaiice of

digital coding systems which are either being installed or which may have been

degraded by system failures. The second is the area of developing techniques

to be used in conjunction with subjective quality measures for improving the

resolving power or reducing the cout of system acceptabIlity assessment. This

research explicitly addressed both of these areas.

The constraints imposed by the two applications areas are quite diffcrcntL. At

Algorit Lh.- to be used by quality assessment devices in the !icld must be • -"

compactly computable to allow for their implementation on modern signal

processing hardware. Likewise, they should be extremely sensitive to any

system degradation, and should indicate with high resolution whcthcr the system

4
*



is 'working correctly'. In addition, i! the system quality is degraded, such 71

algorithms should give good estimates of the loss of quality due to the

degradation, The general applicability of these devices to a very large class

of coding systems is of second..ry concern in this environment, since the

ensemble of coding systems is limited. The key research question in this area,

thcreforc, is given computational constraints, how large a class of distorting

systems can be effectively addressed by composite objective measures.

On the other hand, algorithms to be used primarily for quality assessments

must conform to a different set of constraints. First, of course, since they

may be performed in non-real-time, they may be moderately computationally

intense (as compared to the highly computationally intense iterative measures
a

employed in digital coder design). I,ikewise, they must address a far broader

range of distortions if they are to be effective. In this regard, it may be

possible to ucvelop objective measures tuned to some general distortion

character[.tics (e.g. waveform coders, pitch excited vocoders, or frequency

domain coders), but any such dynamic variation in the application of the

objective measure algorithm must also be driven objectively. To design such

measures effectively, it Is important to configure the algorithms In a

perceptually relevant way. Stated another way, if a broad class of distortions

are to be included, objective measures should he designed to estimate

quantities which are directly related to the quality degradations perceived by

humans,

The design of objective speech quality measures for these ,wo applications

areas were addressed in the context of a three part study. Although in some

sense all three parts address both application areans, the first two parts were

particularly intended to address issues germane to the general quality

4
assessment problem, while the third part addressed the field quality tcting

- -. .
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1.4 Objective Measures Based On Signal Processing Models For The Inner Ear

The first part of the research dealt specifically with designing new

objective speech quality measures based on signal processing models for the

inner ear. A detailed description of this research and its results is given in

Chapter 4.

Briefly, the question of designing and assessing objective measures based -

on aural models was addressed in a three phaze study. In the first phase,

models related to those previously proposed along with possible augmentations

were studied, and a set of parameterized objective measures were developed. In g

the second phase, the control parameter space was studied using correlation

analysis techniques described in C1 apter 2. In the final phase, the optimized

objective measures from phase two were combined with other objective measures

to form improved composite measures.

For the most part, the objectiv3 measures studied here can be considered

to bc parametorizcd. frequency-variant spectral distance measures. In the

originai research [1.5], the best of this class of measure was found to have a

correlation coefficient of .60 across all distorions for frequency-invariant

spectral distance measures, and a correlation coefficient of .71 for frequency-

variant spectral distance measures. The new measures designed in this research

were able to achieve a correlation coefficient of .70 across the same

distortion ensemble. This can be considered to be a good, although no

spectacular, improvement for thij class of measure. The best results were

obtained for measures designed using the principals first suggested by Dennis

Klatt [1.49]. Based on these and other related results, it is a reasonable

conjecture that the level of performance achieved here is near the maximum

which can be expected from simple, fully paramcLerizcd spectral distance

measures.

-. . ," .-S• ." . " ... •



1.5 Parametric Objective Quality Measures

Two of the attractive features of the DAM [1.14] are that its parametric

subjective quality estimates serve to give insight into the perceived nature as

well as the perceived level of the distortion and the regression model which

relates the parametric subjective qualities to the estimated system

acceptability gives insight on the relative importance of different parametric

qualities. If an objective measure is to succeed over a large class of

distorting systems, then it must somehow incorporate information related to the...--

perceived nature of the distortion.

Part two of this study was aimed at designing a better objective quality

measure based on individual parametric objective measures. A detailded

description of this research is given in Chapter 5. In the first phase of this _4

study, multi-dimensional scaling was used to characterize the relationship

between the objective measures previously designed, the isometric subjective I

speech quality measures, and the parameLric subjective speech quality measures.

This initial analysis proved to be the key to designing better objective.

measures in that it characterized the problem in such a way that the design

issues became obvious. In the second phase, a regression analysis was

performed which showed exactly which parametric measures are most important in

predicting system acceptability. As a result of this regression analysis, a

4 subsct of parametric subjective measures was identified for further study. In

the ensuing phases, a specific objective measure was designed to predict each

of the parametric subjective measures in the subset. This design was done

interactively using statistical analysis techniques on the speech quality data

bases.

On the whole, the results of this part of the research were very good. In

particular, it was possible to identify exactly where the previously proposed -"

objective measure were bLcaking down, and further it was possible to see
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exactly what had to be done to correct the problem. What had to be done, in

this context, was to design particular new objective measures which predicted

particular parametric speech quality measures. The result of this effort was a

number of new parametric objective measures which did an exceptional job at

predicting many of the important parametric subjective measures.

In effect, what has been designed and studied here is an objective version

of the DAM. The test will provide an overall acceptability estimate and set of

parametric quality estimates for individual perceived qualities. It would be

naive, of course, to expect such a measure to perform comparably with the DAM

itself. However, such a test along with a complete statistical analysis of its

projected performance, should prove very valuable in both screening of systems

before the application of subjective quality tests and in providing

analytically tractable information on the nature of the distortion for use in

the coder design problem.

It would be misleading to imply that this study was completely successful.

In particular, the performance of the new parametric objective measures was

varied, and whereas some performed extremely well, others were not as suc-

cessful. Nevertheless, it is fair to say that these results represent a major

improvement in our understanding and our ability to implement objective speech

quality measures.

1.6 Classified Objective Measures

The third part of the research was a systematic study of classified

objective measures as applied to distortion subsets. A classified objictivc

measure is one which performs differently based on 'classification information'

which is available. This information may be an external input to the mcasurc

(such as an operator supplied classification) or it may be an internally

AL
supplied parameter (such as an objective classification of sound segments into

8
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I
approximate linguistic categories). The details of this research are found in

Chapter 6.

The research on classified objective measures really had two goals. The

first goal was to investigate the use of classified measures for very narrow

classes of measures. The purpose of this part of the study was to design

measures appropriate for field testing communications systems where the class

of system in use was known. The second goal was to design new, broad based

classified measures for a large ensemble of distortions. The basic approach

used in this part of the research was to use statistical techniques to identify

distortion subsets for which the subjective measures could be predicted well by

the objective measures under study.

It is fair to say that the research on the classified objective measures

was the least successful of the three approaches. It is true that the work

clearly illustrated the viability of using narrowly classified objective

measures for field testing applications. It is also true that it was clearly

illustrated that the distorted data base could be partitioned so that high

quality classified objective measures could be designed for use with a large

distortion ensemble. The problem was that cO- members of the required

distortion subsets appeared to be so dissimilar in both their perceptual

"characteristics and their signal characteristics that we were unable to

adcquately specify either objective or subjective rules for classifying the

distortion. This does not really prove that this approach is without merit.

It means, rather, that at this time we have not been able to discover
r

* distortion classification techniques which work well enough to prove out the

approach.

The Distortion Ensemble Augmentation

The final task which was addressed as part of this research contract was

the augmentation of the existing distortion ensemble from 264 distortions to

9
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318 distortions. Fundamentally two classes of distortions were included in

these new distortions. The first were a set of speech coding techniques which

had been developed and become common since the original data bases were

developed in 1978. These new coding distortions included subband coders.

adaptive transform coders, ADPCM with noise feedback, multi-pulse LPC, and

channel vocoders. The second were a new set of 'banded pole distortion'

controlled distortions [1.5]. The purpose of these new controlled distortions

was to increase the overall spread of subjective responses, which had been

inadciuate in the first study. The new coding and controlled distortions are

described in detail in Chapter 3.

The basic design criterion for all of the distortions was to have each -

range from 'barely perceivable' to 'moderately distorted'. All of the new

distortions met this criterion with the possible exception of the channel

vocoder, for which the spread in subjective responses was slightly less than

des ired.

4 10
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CHAPTrER 2

THE TESTING OF OBJECTIVE MEASURES

2.1 Background

As was noted 'n the introduction, this research project is essentially a

continuation of a research project funded by the Defense Communications Agency .

in 1978 entitled An Analysis of Objective Measures for User Acceptance of

Yzlce Communications Systems [2.1]. The goal of the original work was to study

the viability of using relatively simple, objectively computrble measures for .

estimating the results of subjective speech quality tests. As part of the

original research, a statistical technique for measuring the expected

4 performance of objective speech quality measures was designed, implemented, and

tested [2.1].

Much of the effort in the original research program was directed towards

the goal of quantitatively evaluating the performance of many of the .

(relatively) simple objective quality measures which had been previously

proposed and used in speech processing. The original study involved over

I 40,000 correlation analyses based on over 2000 separate objective speech

quality measures. Most of these objective measures were parametric variations

of compactly computable fidelity measures. The major iccomplishmcnt of this

early work was that it gave for the first time a degree of quantitative insight

into the way in which many objective measures performed relative to one another

as well as to subjective quality estimates. This study showed, for example,

that the relatively simple log area ratio measure performed as well as the mnore S

complex log spectral distance measures [2.1]. Likewise, the short-time

frequency-variant SNR was found to be an outstanding measure for wave-form

coders 12.1]. In addition, thc effects of frequency variant 12.2][2.3] and time i

variant [2.41 objective measures were investigated in some detail. Al of these
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results served to provide much-needed insight into the fundamental nature of

II
perception of speech distortion and the associated foundations of speech coder iJ•

acceptability.

In another sense, however, the first study generated more questions than

it answered. A basic feature of the approach used in both the current and

original research programs is that the experimental procedure requires immense

amounts of data reduction and data storage. This is a result of the very

large size of the data bases involved (about 6 X 10 bytes of data storage) as

well as the very large number of objective measures which can be studied in a .

single experiment. Stated simply, although it takes a great deal of effort to

generate a single result, it takes little additional effort to generate many

results. tcnce, the experimenter is faced with the choice of either an

intrinsically slow iterative design procedure or an immense data reduction task

between experimnents. As a result, the earlier research progr,,m was able to

perform an extensive study of the class of simple objective speech quality

measures, but it was only able to perform a limited study of the more complex

and specialized measures. In particular, it performed an initial study of

composite objective measures, which are single objective measures formed as .

combinations of several other objective measures, and parametric objective

measures, which seek to estimate the parametric subjective speech qualities

12 1].

An important result of the original research program was that most of the

simple objective measures currently in use, along with their parametric

variations, do riot perform very well when applied to a 'irgc class of r

dissimilar distorting systems. In particular, the highest correkitLion

coefficient derived for a single, frcquency-invariant objective measure applicd

across all distortions was in the range of .60 to 6b 12 11[2211.b]. This
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level of performance is not good enough to be of great utility for either

quality assessment or coder design. However, a few initial experiments were

performed on composite objective speech quality measures, which were formed as

weighted sums of sets of dissimilar simple objective measures. Despite the fact

that these early experiments used a broad statistical approach, which

incorporated no special insight in regard to either the nature of the data

bases or the nature of speech perception, the results were very promising. In

particular, one composite measure was tested which attained a correlation score

of .88 across the entire distortion ensemble. Because of the nature of the

analysis procedures, however, it was not possible to interpret this result

adequately in a broad sense. For example, the measure's robustness, as well as

to what extent this measure's performance was due to the statistical properties

of the data bases rather than fundamental properties of speech perception, arc

not clear.

In short, two basic points emerged from the results of the original

research program. First, it seemed clear that new objective measures could be

designed whose performance substantially exceeded the performance of the

objective measures currently in use. Second, it also seemed clear that

considerable additional work would be required in order to design these new

measures. Due to the large size of the data bases involved and due to the

computational intensity of the statistical estimation tasks, the original

research had only begun the task of effectively using the data bases to design

new objective speech quality measures. What was required was more in-depth look

at the available data.

2.2 The Basic Testing Procedures

The objecti-je speech quality measures of interest in this study can all bc

defined in terms of the model of Figure 2.2-1. In general, these objective

measures are computed from an input or undistortcd speech data set, S, and an
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OBJECTIVE FIDELITY MEASURES

SPEECH

INPUT SPEECH OUTPUT SPEECH
DATA SET SYSTEM DATA SETS ------ _.SO

SOBJECTIVE

FIDELITY
MEASURE

F(S, SQ)

FO - F(S, SO)

CONDITIONS FOR A MEASURE TO BE
A METRIC

1. F(S, SO) - F(SQ, S)

2. F(S, SQ) 0 if S - SC"

F(S, SCI) Ž0 if S S

3. F(S, SO) < F(S, Sy) + F(Sy, SO)

Figure 2.2-1. System for Computing Objective Qu.lity Measures.
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output or distorted speech data set, S The output speech data set is formed

by passing the input speech data set through the speech communications system

under test. It should be noted that two features of this research arc first,

the objective measures studied generally require both the input and output

speech data sets and, second, the tests are always performed on a actual speech

data. In particular, exactly the same speech data is always used for both the

objective and subjective speech quality measures.

For the purposes of this research, objective measures may be very simple.

such as the traditional signal-to-noise ratio, or they can be very complex. A

complex measure might use such diverse quantities as a spectral or other

parametric distance between the input and output speech data sets; objectively

computable distance measures specifically designed to predict subjective

quality for a class of distortions; objectively computable distance measures

specifically designed to predict parametric subjective quality; semantic,

syntactic, or phonemic information extracted from the input speech data set; or

the characteristics of a talkir's vocal tract or glottis. The objective

measures studied as part of this research program make no explicit use of

semantic, syntactic, or phonemic information, but they do utilize all of the

other clasces of information listed above. If an objective measure satisfies

the triangle inequality and other conditions shown in Figure 2.2-1, then it is

a metric. Although metrics have many desirable properties, an objective measure

need not be a metric to be of interest.

The procedure developed for the testing of objective speech quality

mcasurcs is illustrated in Figures Z.2-2 and 2.2-3. Figure 2.Z-2 describes the

procedure for untralned objective measures, while Figure 2.2-3 describes the

procedure for trained objective measures, The entire procedure is based on an

input speech data set called the undistorted speech data base which in this

study, consists of one set of twelve Harvard phonemically balanced scntcnccs,
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CREATE
I UNDISTORTED

SENTENCE
SET

UNDISTORTED DATA BASE U(m, n)

APPLY
CODING

AND OTHER
DISTORTIONS

DISTORTED DATA BASE D(m, n, d)

4 APPLY

FIDELITYSUBJECTIVE
MEASURESQUALITY

TESTS

SUJCTV d

0 (d) MEASURE BS

FIGURE OF MERIT

Figure 2.2-2. Block Diagram for Systeim for Comparing the Effectivene.,
of Objective Quality Measures.
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spoken by each of four talkers. The four talkers included a low-pitch male,

two moderate-piLch males, and a moderate-pitch female. The 48 sentences were

filtered using a tenth order elliptic lowpass filter with a 3.2 kilohertz

cutoff frequency, and were sampled at an eight kilohertz rate with 12-bit A-to-

D converter. This particular format was chosen so that the input speech signals

would be approximately toll quality, although the speech samples were not

passed through a highpass filter, as would occur for true telephone speech.

The entire undistorted speech data base contained about four minutes of speech.

All of the sampled speech in this study was stored on magnetic media as 16-bit

integer data in digital form.

The distorted speech data base was generated by applying a large number of

distortion generation (e.g., digital coding) systems to the signals in the

undistorted speech data base. The distorting systems were generally implemented

as FOMTIZAN programs designed for the network of minicomputers and array

processors comprising the Georgia Tech Digital Signal Processing laboratory

[sce Appendi. Al. In every instance, great care was taken to synchronize the

input and output speech signals at least on a frame-by-frame basis, and on a

sample-by-sample basis whenever possible. This complctely eliminated the

problem of synchronizing the undistorted and distorted speech signals, and the

synchronization problem was not addressed by this research. At the beginning

of Lhis research contract, the distorted speech data base contained speech

generated by 264 distorting systems, for a total of 4x12x264=12672 sentenccs,

or 14.42 hours of distorted speech. As part of this research, an additional 511

distorting systems were added, bringing the total to 15456 sentences, or 17.59

hours of distorted speech. The details of the pre-existing data basc arc

described in section 2.3, while the new speech distortions are described in

Chap~ar 3.

The third major component of the objective measure testing procedurc is
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the subjective data base, which is formed by applying a subjective speech.-

quality measure to all the distortions in the distorted speech data base. In

this study, the subjective test used was the Diagnostic Acceptability Measure,

or DAM, developed by William D. Voiers at the Dynastat Corporation [2.1][2.6].

This is a widely used subjective quality test of the mean opinion score variety

in which subjects are asked to assign a number to their perception of the

quality of the speech samples under consideration, and a final system quality

score is derived from these individual quality assessments. The DAM test has

the great advantage that it not only gives isometric quality assessments, such

as perceived acceptability or perceived pleasantness, but also gives estimates

of parametric subjective qualities as well. The latter of these include such
II

things as system fluttering. SF. or system lowpass, SL. In addition, the DAM

also allows subjects to differentiate between background and foreground

distortions. Details of the DAM and the subjective data base are discussed in
I

section 2.4 and Chapter 3.

* Two broad classes of objective speech quality nmeasures which were

addressed as part of this study were untrained objective measures; and trained

objective measures. In the former, all the parameters which control the

objective measure are fully specified as part of the definition of the

objective measure itself. In the latter, some of the control parameters for the

objective measures arc statistically optimized using the data in the three data

bases.

rhc untrained objective mcasures arc tested as shown in Figure 2.2-2.

4
First, the objective quality measure is applied to all of the distortions in

the distorted speech data base, using the undistorted speech data huse us

rcferrj ". Second, a statistical correlation analysis is done between the

4 .

results from the objective measure and corresponding rcsults from t"i-
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subjective data base. The results from the statistical analysis are used as a .1
figure-of-merit for comparing different objective speech measures.

Two figures-of-merit have been used throughout this research program. The

first is an estimate of the correlation coefficient between the objective

quality measure, O(d) (where d is the index of the distortion) and the

subjective quality measure, S(d). This estimate is given by

p -------------------------------------- 2.2-1

(S(d)-S(d))
2 ,1/2[; (O(d)-O(d))2]1/2

This results in a minimum variance linear estimate of the subjective quantities

from the objective quantities given by
pa.!

PU 2

S(d) S(d) + -- ' (O(d)-O(d)) 2.2-1
•0

A
where u and a0 are the estimated standard deviation for the subjective ands 0

objective measures respectively. It would not be correct to attribute any -_

absolute validity to this estimated correlation coefficient in relation to

other studies. For example, since we have not randomly sampled the universe of

all coding distortions, our correlation estimates are biased by the content of

our distortion ensemble. Therefore, correlation estimates computed in this way

are only meaningful when comparing objective measures over exactly the same

distortion ensemble, and such estimates should certainly not be compared 0

otherwise.

A more universal figure-of-merit can be computed if the objective csLimaLc

of the subjective data is viewed as a linear regression analysis. The desired

figure-of-merit is the expected standard deviation of error when the subjective
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results are estimated entirely from the objective results. given by

Cr f [E[(S-D(S1O)) 2 ]] 1 [s(l . 2)]1/2 2.2-3(1

e ." - -2-

This estimate, which incorporates the variance of the subjective data base as

--
well as the correlation coefficient, is a more pleasing figure-of-merit since"

it can be viewed as an actual performance estimate.

The trained objective measures are tested as shown in Figure 2.2-3. The

primary difference between the trained and the untrained measures is that the ;'''

trained measures are defined using some number of unspecified parameters,

whereas untrained measures are defined with all parameters specified. Trained

objective measures are tested using the two-pass procedure of Figure 2,2-3. In

the first pass, the regression coefficients for the objective measure under

test are set so as to maximize the correlation between the objective and

subjective results. Then, in the second pass, this now fully specified

objective measure is tested exactly like an untrained measure. In this

procedure, if the data in the training set is the same as the data in the

testing set, then the figures-of-merit estimate an upper bound on the

performance of the objective measure under test. If separate training and

testing sets are used, then the figures-of-merit form an actual performance -

estim~ate.

* 2.3 The Distorted Speech Data Base

As previously discussed, the distorted speech data base is generated from
0

the undistorted speech data base through the application of a large number of

distorting systems. each of which is uniquely identified by its type of

distortion and its level of distortion. In general, each type of distortion

was realized with six (or sometimes twelve) levels of distortion. Whenever
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possible, these levels were set to span the perceived range from barely

perceivable to moderately distorted. Table 2.3-1 summarizes the distortions

used in this research.

As can be seen from Table 2.3-1. some of distortions in the distorted data

base already existed at the beginning of this research program, while others .. ,

were generated as part of this research. The pre-existing distortions are

described in detail in a previous DCA report [21], while the new distortions

are described in Chapter 3 of this report. The purpose of this section is to

briefly review the distortions which were generated as part of the previous D)CA

research program.

2.3.1 Coding Distortions

The purpose of the coding distortions was to include in the distorted

speech ensemble a reasonable cross-section of the digital coding techniques.

Those included in the original data base were chosen from among systems which

were either in use or under active development in 19"78. As can be seen from

Table 2.3-1. these coding distortions can be roughly divided into two classes:

wavcform coders and vocoders. The waveform coders included six time-domain '

coders (ADM, CVSD, APCM. ADPCM, and APC) and one frequency domain coder (ATC). "

The vocoders were all based on linear predictive coding L.Žchniques, and

included two voice excited (now more commonly call residual excited) vocodcrs

4 (VEX) and one pitch excited vocoder (LPC).

Among the waveform coders, two different adaptive delta modulators wcrc

included in the distortion ensemble: ADM and C`VSD. The ADM system, which was

based on a technique proposed by Jayant [2.7] used a onc-bit memory to control

its quantizer adaption and one-tap linear predictor in which the predictor

constant was chosen to minimize the mean square prediction error at the

operating bit rates across the entire input speech set. In addition, the

quantizer attack and decay rates were chosen to be equal 12.11 1[.7]. The
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Coding Distortions Number of Cases Added During Current Study

" ADP(M 6 No
APCM 6 No

' CVSD 8 No
*ADMA 6 No

APC 6 No
LPC Vocoder 6 No
VEV 12 No

' ATC-I 6 No
ATC- 2 6 Yes
SBC 6 Yes
ADPCM+Noise Feedback 6 Yes
MP- LPC 6 Yes
Channel Vocoder 6 Yes

Controlled Distortions

" Additive Noise 6 No
* Low Pass Filter 6 No
SHigh Pass Filter 6 No

Band Pass Filter 6 No
Interruption 12 No
Clipping 6 No
Center Clipping 6 No
Quantization 6 No
Echo 6 No

Frequency Variant
Controlled Distortion

- Additive Color Noise 36 No
Banded Pole Distortion-I 78 No
Banded Frequency Distortion 36 No
Banded Pole DisLortion-2 24 Yes

*, Table 2.3-1 Surmary of Coding and Controlled Distortions in the Distorted
"* Data Base
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system was operated at 8. 12, 16, 24. and 32 KBPS, and the uncoded speech was

included in this set as the sixth distortion level,

The CVSD realization used was one which had been generated as part of a 6

separate Defense Communications Research Program [2.8]. This CVSD had been

specifically optimized for tandeming with pitch excited LPC vocoders, although

no tandems were included in this study. Just as for ADM, the single predictor

coefficient for each CVSD bit rate was set to match the statistics of the

undistorted speech ensemble. All of the CVSD systems had a minimum step size of

10 and an expansion ratio of 166 [2.1][2.8]. ''lie CVSD was operated at the same

bit rates as the Jayant ADM above. J

The only difference between the two adaptive PCM systems (AIICM and ADICM)

was that ADPCM used a one-tap fixed predictor (value .92) while APCM used no

predictor. Both systems used a feedback exponential quantizer adaption

technique similar to the approach used in CVSD [2.1][2.61. both systcms were

operated at bit rates of 12.7. 186. 22.5, 25.3. 27.6. and 29.6 Kbps.

The Adaptive Predictive Coder [2.9] simulated in this study used a tenth

order, time varying, linear predictor which was updated every fifteen inscc. The •

LPC coefficients were generated using the autocorrelation method [2.10]. and s

were quantized using inverse sine quantization [2.111. The residual encodcr was

of the adaptive feed forward type, and used a three level quantizer. The APC 1

was operated at rates of 13.3, 13.9, 14.5, 15.2, and 15.8 Kbps. '[he sixth -A

distortion level used unquantized (32-bit floating point) IPC coefficients.

The adaptive transform coder (ATC), was, by mjodern standards, a relatively

primitive transform coder. In particular, it was based on the original work by

Zclinski and Noll [2.12] but used an [11C based spectral estimation procedure

to assign the bits to its different channels [2.1]. This is somewhat similar to

the technique later used by Tribolet and Crochierc 12.13], but without their

pitch utilization technique. The [11C coefficients were also quantized, and the
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transform coder was operated at rates of 20, 16, 12, 11, 9.6, and 8 Kbps.

Both of the so called voice excited vocoders (VEV) were really residual

excited vocoders where only the lower frequencies of #.he residual signal were

retained in the transmitted signal. At the synthesizer, the high frequencies in

the excitation signal were regenerated using a hard-limiting operation and an

additional tenth order LPC whitening filter. Like the APC and the pitch excited

LPCI vocoder, the VFV*s used an inverse sine quantizer for the PI'C coefficicnts. J

The adaptive quantizer for the decimated residual signal was of the feed-

forward type, and the fundamental difference between the two VEV systems was in

the rate at which the residual signal was transmitted; 5615 and 7,100 bps,

respectively. The first VEV operated at rates of 9.5, 8.8. 8.1. 7.5. 6.9. and

6-6 Kbps. while the second VEV operated at rates of 11.3, 10.6, 9.9 9.3, 8.7,

and 8.4 Kbps.

The pitch excited LPC vocoder also used an inverse sine quantization

- proccdure for the [PC coefficients, and a differential encoder for the pitch

and gain information. The pitch detector used was of the homomorphic type,

although some pitch period and voicing errors were manually corrected. This was*I
an intentional attempt to force the primary distortion in the coder to be from

the vocal tract representation and not from pitch errors. The I,PC vocodcr used

a fifteen msec frame interval, and operated at data rates of 1.8. 2.4. 3.0. 'A.I

3.7,and 4.3 Kbps. The sixth distortion level used unquantized (32-bit floating

point) LPC coefficicents. L-.-
.-.4

2.3.2 Controlled Distortions
I÷

A large portion of the distortions generated in the original research

program were not explicit coding distortions, but were coatrolled di:;Lortions.

E'ach of these distortions were included for one of two reasons. E'i tLcr they
*4

were considered to be examples of specific types of subjectively relcvont.
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distortions, or they were considered to be a type of distortion which does

occur in coding systems, but which does not occur in isolation.

There were fundamentally two classes of controlled distortions in the

initial distorted speech data base: simple distortions; and frequency variant

distortions. The frequency variant disLortions were included for two main

reasons. First, they could be used to meusure the relative importance of

different types of distortions when they are applied in different frequency

bands. Second, frequency variant controlled distortions offer an environment in

which frequency variant objective measures could be expected to be relatively

uncorrclated between frequency bands.

Table 2.3-1 give a summary of the controlled distortions used in the

original study. The simple controlled distortions included additive noise,

lowpass filtering, highpass filtering, bandpass filtering, i.-terruption,

clipping, center clipping, quantization, and echo. The frequency variant

distortions included additive colored noise, banded pole distortion, Und banded

frequency distortion.

Most of the simple controlled distortions can be described in only a few

words. The additive noise, for' example, was white and Gaussian, and the

resulting waveforms had SNR's of 30, 24, 18, 12, 6, L id 0 d13. Likewise, both

the highpass and lowpass filtering distortions had cutoff frequencies of 100,

800, 1300, 1900, 2600, and 3400 Hertz. The bandpass filters had passbands of

0-400, 400-800, 800-1300, 1300-1900, 1900-2600, and 2600-3400 HIertz. It should

be noted here that all of the bandpass distortions and some of the lowpass and

highpass distortions were quite severe, and were unique in that regard. S

The interruption distortions wcrc implemented by multiplying the input

speech signals by periodic waveferms which alternated between the values one

and zero. Two different periods were used for these signals: the long period,

which was 125 msec; and the short period, which was 37.b mscc. Ihe level of
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distortion for interruption was varied by changing the duty cycle of the

periodic waveforms.

Both of the clipping distortions were implemented using a threshold at

which the waveform was appropriately clipped. In terms of a percentage of the

available dynamic range of the input speech signals, these were given by 15%..

7.6%, 3.87. 3.057.. 1.53%. and .76% for clipping, and by 7.6%, 3.8., 1.9%, .767,

38%, and .197. for center clipping.

The quantization distortion was implemented as a fixed, linear PCM system

which used 64, 48, 32, 24, 16. and 12 levels per sample. This corresponded to

bit rates of 48, 44.7, 40. 36.7, 32, and 28.7 Kbps, respectively. Finally, the

echo distortion was formed by adding a delayed version of the input speech

signal back to itself. The delays used were 1.25, 6.25, 12.5, 25, 62.5, and 125

* msec.

The original study included a total of three types of frequency variant

distortions. The first, additive colored noise, was designed to approximate

waveform coder distortions in a frequency variant way. The second, banded pole

distortion, was designed to approximate distortions typical of vocal tract

modeling vocoders and APC's in a frequency variant way. Finally, banded

frequency distortion was designed to approximate the distortions found in A'C's

and adaptive subband coders in a frequency variant way. All of the frequency

variant distortions operated in six frequency bands. The band limits used wcrc

0-400, 400-800, 800-1300, 1300-1900, 1900-2600, and 2600-3400 Hertz.

The additive colored noise was formed by first bandlimiting white GCissian

noise, and then adding the resulting signal to the original speech signals. In

all, six different additive colored noise distortions were included, one for

each of the frequcncy bands listed above. Using six distortion levels per

distortion type resulted in 36 separate distorting systems.
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The banded pole distortion was realized in four steps. First, an LPC,

analysis was performed, and a residual signal generated. Second, the I-PC

polynomials were factored and the pole locations were perturbed within one of

the frequency bands. Third, the LPC coefficients were regenerated by

multiplying together the individual perturbed poles. Finally, a distorted

speech signal was generated by passing the residual signal through the

regenerated L1C filter. The entire procedure is described In detail in Chapter

3 of ttis report. The pole perturbaLions were performed in both the radial and

angular directions for all six frequency bands. These, plus two full-band

distortions, resulted in a total of 78 separate distortions.

The banded frequency distortion was based on a short-time Fourier

transform (STFT) representation for the speech signal. Fundamentally, the

banded frequency distortion added noise to the STFT of the speech signal in

bands. The noise was white and Gaussian, and was always added In phase with the

original signal. This means that the noise was added to the magnitude of the

STFT while leaving the angle undisturbed. Once again, the six frequency bands

combined with six distortion levels resulted in 36 separate distortions.

2.4 The Subjective Data Base

The emphasis in this research has always been on highly intelligible

coding techniques for use in toll quality applications. For this class of

systems, context free intelligibility tests, such as the Din' and the MiZ', are

not particularly effective. This is because these high quality systems

generally crowd the high end of the intelligibility scale, and hence are not

well resolved by intelligibility alone. In addition, for high quality systems,

it is generally acknowledged that user acccptance depends on factors other thon

intelligibility. 'The ideal type of test for this class of systems Is some form

of communicability test [2.16] in which a user's performance is meiisurcd on

some complex or difficult task which utilizes the specch coding sysLenc
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directly. Unfortunately. communicability tests are not reasonable for this

research for two reasons. First, such tests are intrinsically expcnsivc, and

the cost of generating the large subjective data bases required here would be

prohibitive. Second, in order to perform such tests, real-time realizations

for the distorting systems are required, which would also be prohibltivcly

expensive,

The only reasonable conmpromise approach left Is to use a subjective

preference test of the mean opinion score type. In such tcests, subjects are

asked to rate speech material on a subjective scale, and the distorting

system's acceptability is estimated from these ratings. Subjective preference

tests have the advantage that they are much less expensive to administer than

communicability tests and they do not require real-time rcaliza.ions for Lhe

speech distortion systems. Such tests have the disadvantage that they must

deal with the subtle nature of subjective preferences and they may require the 4

* use of a large number of subjects in order to increase thc test's resolving
power to an acceptable level.

The subjective preference test chosen for this work was the D)iagnostic

Acceptability Measure (DAM) developed by the Dynastat Corporation. This .

particular test was chosen for several reasons. First, it is a very carefully

conceived and designed measure which has been widely used and verified .

Second, since it is a widely uscd tczl', its results are accepted and understood

by a large number of people. Third, and most important for this research, the

DAM is a very fine-grairncd test which measures not only such inometric

subjective quantities as acceptability, but a large number of parnmctric -1

quantities as well. This, in effect, generates a feature set which forms a

fine-grained perceptual signature for each distortion. As will become obvioum

from the experimental results, without the informutlion provided by tthesc
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parametric measures, the design of high-performance objective speech quality j
measures would be very difficult.

All of the Diagnostic Acceptability Measures generated as part of both the

previous research program and this research program were administered by the

Dynastat Corporation under subcontract to Georgia Tech. "1

As with most mean-opinion subjective tests, the DAM requires listeners to

characterize the distorted speech in absolute, rather than relative, judgments.

However, the DAM is unique in two specific ways. First, it combincs the j
indirect parametric approach with the more conventional isometric approach,

which, as previously noted, rest.Its in a much more fine-grained estimate of the •

speech quality. Second. the DAM allows listeners to distinguish between system

and background distortion in making their judgments.

The rating form used In the DAM test is shown in Figure 2.4-1. The "1

subjects rate the distorted speech on ten parametric system scales, seven .

parametric background scales, and three isometric scales. Factor analysis was

previously used [2.11 to reduce the Input data to the form of Figure 2.4-2. '

The twenty original subjective scales are reduced to fourteen output scales:
0k-

six parametric system qualitles (SF, SIi, SD, SI, SI, and SN); four parametric

background qualities (UN, B31, BF, and BiR); and three isometric quailtics

(Intelligibility, Pleasantness, and Acceptability), From all these parameters,

a total Composite Acceptability (CA) is estimated.

Previous research on the Paired Acceptability Rating Method (['ARM) [2.l1b]

has shown that much of the apparent randomness in user preference tests is

actually attributable to stable differences in listener preferences. The DAM 0

uses this fact to good advantage through the careful tracking of tiser

performance by the use of anchors and probes. This information is then used to

Improve the renolving power of the DAM through Lhc statistical correction of

* 3 3
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DAM SYSTEM RATING FORM DAM RATING FORM (cont.)

Make. a ilesh at the appropi~ato point on each scale to indicate THE BACKGROUND HSSN

the degree to which this transmaisson temple is characterized bry

the indicated quality. 0 10 20 .30 40 50 0 70 809'0 100
*TH( SPEECH SIGNAL Negligible SIMMERING FIZZING Extreme

* 102 0 4 5' 0 7'0 8'0 9'0 10 0" 1'0 2'0 '30 405 070 809010
FLUTTERING CHIRPING

* ~Negligible TA~ITTERING PULSATING Extreme Negligible CHEIGCIIIGExtreme

10 20805 90 100 0 405 6 0 09 100
MUF LEUROAR ING

NeliibeSMTHRE OWExree NeliibeRUSHING CUSHING Extreme

0 T0 20 3 40 0 60 0 80 9 10 0 l10 2'0 .0 40 '50 '60 70 s0 90 100
DISTANT CRACKLING

Negligible SMALL COMPACT Extreme Negligible SCRATCHING STATICY Extreme

0 io2 0 5 07 09 1001 2'0 30 40 '50 60 70 8O 0 90 100
RASPING BUZZING

Negligible SCRAPING GRATING Extireme Negligible HUMMING WHIRRING Extreme

0 1'20 -30 0 5'0680 70-8'0 9,0100 0 10 20 30 -40O' 5'0- 60 -70 830 9`0 10'0
THIN RUMBLING

Negligible TINNY HIGH Extremet N4egligible THUMPING THUDDING Extreme

0 10 20 30 40 50 80 70 80 90 1,00 6 10 20 30 40 50 60 70 80 90 100
UNNATURAL BUBBLING

Negligible MEC14AJICAL LIFELESS Extreme Negligible G3URGLING PERCOLATING, Extreme

0 1'0 2LA0 4'0 *5'0 '6'0 7'0 8'0 90O 100
BABBLING

Negligible CHORTLING SLOBBERING Extreme THE TOTAL EFFECT

1 '0 2'0 30'4'0 '50 60 '7'0 8'0 9'0 '100 0' 10-2`05'3'040506'0 7"0 09'010!0
IRREGULAR INTELLIGBILE

Negligible SPSOI IFLExtreme Negligible UNDERSTANDABLE MEANINGFUL Extreme

6 10 20 30 0 5'0 '6'0 70 8 9'0100 0" 1'0 2L0 5'0 0C '5'0 '6'0 7'0 8'0 90 '1(00
NASAL PLEASANT

Negligible WHINNING DRONING Extrome Negligible RICH MELLOW Extreme

0 102'0'30'4'0 ' '5 '0 70 so 9bIi c 1 0 2 05 3'0 4'0 '5'0 C'0 7'0 805 9 01 0'0
INTERRUPTED

*Negligible INTERMITTENT CHOPPED Extreme NogIig~ble ACCEPTABL.E Extreme

Figure 2.4-1. DAM Rating Form.
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Figure 2.4-2. STRUCTURE OF THE DAM

Signal Quality Measures

SF 1,7 Fluttering Amplitude-
Bubbling Modulated Speech

SH 3,5 Distant Highpassed
Thin Speech

SD 4,14 Rasping Peak Clipped
Crackling Speech, Quantized

Speech

SL 2 Muffled Lowpassed
Smothered Speech

SI 8,10 Irregular Interrupted
Interrupted Speech

SN 0 Nasal Bandpassed Speech
Whining Vocoded Speech

Background Quality Measures

BN 11,13 Hissing Guassian Noise
Rushing

BB 15 Buzzing 60-120 Hz Hum
Humming

BF 12,17 Chirping Errors in narrow
Bubbling band systems

BR 16 Rumbling Low frequency
Thumping noise

Total Quality Measures

Rating Representative

Quality Scales Used Descriptors Exemplars

Intelligibility 13 Intelligible Undegraded Speech

Pleasantness 19 Pleasant Undegraded Speech

Acceptability 20 Acceptable Undergraded Speech
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user responses. The total DAM output for a single type of distortion is

illustrated in Figure 2.4-3.

At the beginning of this research program, the subjective speech data base

contained the complete DAM results for the 1056 talker-distortion combinations -i

in the initial distorted speech data base [2.1]. As the result of this

research, an additional 232 combinations were added. A fairly detailed

discussion of the initial subjective data base was included in the previous

research report, and the interested reader is referred there for detailed .

information [2,.1..

On the whole, it is a fair statement that the original subjective data

base met its design goals. That is to say that it excited the appropriate

range of perceived distortions, it excited all of the various parametric

scales, and it represented a reasonable ensemble of coding distortions for the

time at which it was designed (1978). There were a few spccific exceptions to

this statement, however. For example, a few of the controlled distortions

could be characterized as severe rather than moderate. These included most of

the bandpass distortions and some of the. highpass and lowpass distortions. In,--,

addition, although the banded pole distortion generated subjective scores in

the correct range, the spread of the distortion levels was not really wide

enough. This result will be discussed more fully in Chapter 3. Many of the

detailed features of the subjective data base will also be discussed in Chapter

4, Chapter b and Chapter 6.
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CHAPTER 3

NEW SPEECH DISTORTIONS \."•

The purpose of this chapter is to describe the new coding distortions j
which were added to the distorted speech data base as part of this research

program. As discussed in the previous chapter, the distorted speech data base -

is a major component in the procedure for designing and testing the new objec-

tive speech quality measures. In general, this data base is formed by

applying coding and controlled distortions to all of the sentences in the

undistorted speech data base. The undistorted speech data base contains a

total of four sets of twelve sentences, where the sentences were all drawn from

a set of phonemically balanced sentences. Since the emphasis in this study was 'ii
on communications systems which, at a minimum, come close to achieving toll

* quality, the undistorted sentence sets were digitized at the toll quality

* standerd. In other words, the sentences were all band-limited to 3.2 kilohertz, J
:- sampled at eight ki'ohertz, and quantized to twelve bits (linear) resolution.

In addition, the timing of the sentences within the sentence sets was

constrained so that the distorted speech could be used directly as input for

S the Diagnostic Acceptability Measure (see Chapter 2 for more details). Hence,

both the subjective quality estimates and the objective quality estimates in

the study were always performed on exactly the same speech data.

All of the distorting systems generated as part of this study wcrc

implemented as programs (usually in FORTRAN) on the network of general purpose

computers and array processors which forms the Georgia Tech Digital Signal

Processing Laboratory [Appendix A]. As was discussed in Chapter 2, thc

distorting systems were implemented so as to maintain either sample-level or

frame-level synchronization between the undistorted input speech and the

distorted output speech, Hlence, the problem of synchronizing the distorted and 9
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undistorted speech was entirely avoided, and that problem was not addressed as

part of this research. Both the distorted and undistorted speech sentence

P sets were always stored as sixteen bit integer data in disk or tape files.

The original distorted speech data base which was available at the

beginning of this research effort [3.1] was described Section 2.3. In all, this

data base included 264 distorting systems applied to twelve sentences for each

of four talkers, for a total of 4 X 12 X 264 12672 sentences. The sentences

are always presented at exactly 4.096 second intervals, resulting in a total

distorted speech data base of 14.418 hours of distorted speech.

Fundamentally, the distorted speech data base forms the ensemble of

distortions over which the statistical estimations used in the design and

- testing of the objective speech quality measures are performed (see Chapter 2

for more details). In an ideal statistical sense, these distortions should be

a randomly selected sample from the set of all coding distortions. This, of

course. is a mnea~ningless statement for all practical applications, since

clearly there exists no reasonable procedures for approaching this ideal. What

was done instead was to design a distortion ensemble which is representative of

q the particular communications environments of interest.

The distortion ensemble in the original study was generated to conform to

several specific design criteria. First, since the interest of the Defense

Communications Agency is primarily in medium-to-high quality speech com-

munications systems, all of the distortions were designed to span the

perceptual range from barely perceivable to modcratcly distortcd. In

particular, the distortions included primarily systems of high intelligibility

whose quality diffcrences arc most appropriately measured by mean-opinion

speech quality tests such as the DAM. Second, since the final goal has always

been to find objective speech quality measures to be used in conjunction with

42



-i
speech coding systems, a number of coding systems were included in the

distortion ensemble. In the original distorted speech data base, these were

primarily representatives of the speech coding systems of interest in the 1976 -j
time frame (see Table 2.3-1). Finally, since it is obvious that in order to

design good objective speech quality measures, the fundamental mechanisms of

speech perception must. be addressed, a number of wide-band and frequency- j
variant controlled distortions were also included. For more detailed

descriptions of all these distortions, the reader is referred to the previous I
DCA repcrt (DAI00-78-C-0003) [3.11 and to [3.2-3.13].

It is important to understand that, from a statistical viewpoint, all of

the estimates per!ormed using the distortion ensemble are biased by the 1
procedures used in choosing the representative distortions. Stated another way,

all of the results of this research must be viewed as estimates of the .

performance of the objective speech quality measures when operating over the

distortion universe which is represented by the distortion ensemble. Hence, .1
the validity of the results are fundamentally limited by the choice of

distortions. B3y any measure, the data bases involved in this study arc large -.1
(probably the largest available anywhere), and their associated statistical

resolving power is correspondingly high. Nevertheless, they are still not

nearly large enough to support a claim of universal validity.

The purpose of this chapLer is to describe in detail the augmentations to

IDthe distorted speech data base which were performed as part of this research

project. These additions were motivated by two problems with the existing data

base. First, the results of the DAM tests which were performed as part of the

original study indicated some deficiencieýs with certain of the frequency

variant controlled distortions, specifically with the Banded Pole Distortions.

Second, since 1978 a number of new and important speech coding techniques have
S

been introduced, and these new coding distortions needed to be included in Lhe
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distorted speech data base in order to maintain the validity of the ensemble.

3.1 Banded Pole Distortion

Over the past decade, linear predictive analysis as become one of the

dominant techniques in speech coding. This technique has been used in many

different coding systems operating at many different bit rates. These coding

systems include the pitch-excited LPC vocoder , the vector-quantized pitch-

excited LPC vocoder, the residual-excited LPC vocoder, the Adaptive Predictive

Coder, the Multi-pulse excited LPC vocoder, the Adaptive Transform Coder, and

many more. All of these systems have the common feature that, as part of the

speech coding procedure, they quantize and transmit frames of LPC coefficients

in some form. In all systems where this is done, this quantization causes

distortion and is perceived as distortion by listeners.

Because the quantization of LPC coefficients is such a common feature in

modern speech coding systems, it is clear that understanding how to correctly

predict subjective responses to this ciass of distortion must be one of the "

primary goals of this research. The problem is that the relation between LPC

quantization distortion and human percepxion is not a simple one. LPC

quantization techniques generally quantize some transformed parameter set

derivable from the LPC feedback coefficients, such as the inverse-sine

transformed PARCOR coefficients, the log area ratios, or the line spectral

pairs. Such distortions are not frequency localized and arc generally spread

over the ontirc frequency range of the signal. HInman hearing, on the other

hand, is a frequency variant phenomena and responds primarily to frequency-

localized and time-localized events. When viewed in the frequency domain, LPC

quantization has the effect on moving the roots of the LPC polynomial, and

hence the poles of the LPC vocal tract transfer function, in both bandwidth and

frequency. Small variations in frequency, though easily perceivable, have
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little impact on the level of perceived distortion. Bandwidth variations,

however, can have dramatic perceptual effects. Bandwidths which are too narrow

cause clearly perceivable 'chirps, whi!. bandwidths which are too large cause

the speech to sound 'muffled.

In actual coding systems, the LPC coefficient quantization distortions

always encompass the entire frequency range and always occur in conjunction

with other classes of distortion as well. If the perceptual effects of this

distortion are to be well understood, then controlled distortions need to be

generated which present the LPC quantization distortion in isolation and in a

frequency variant way. In the previous DCA research, the distorting system

shown in Figure 3.1-1 was used to generate the pole distortion. In this system,

the speech is first pre-emphasized using a second order filter, and then a

framed LPC analysis is performed. The results of the LPC analysis is then used

to inverse filter the original speech, giving an approximation of the glottal

wave excitation [3.3].

Following the inverse filtering operation, the poles of the vocal tract

function are then found by factoring the LPC polynomial. Then the bandcd pole

distortion is applied by first identifying all the poles within a fixed

frequency range, and then moving the poles slightly i:. either frequency or

bandwidth, or both. This 'jittering' of the poles is controlled by two uniform

random number generators. The 'frequency range,' FR, factor gives the range of

frequency, in Hertz, in which the poles are allowed to move. The 'bandwidth

factor,' BF, is a multiplicative factor controlling the bandwidth motion by

distorted radius = (undistorted radius)[1+(BF)rl 3.1-)

where r is a uniform random number which ranges between plus one and minus one.

Once the pole locations are distorted, they are recombined tr -"i a new set of

LPC coefficients, a'(k). These coefficients are then usca 'plcment a new
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.A vocal tract filter to create the distorted speech. The pole distortions q

included in the original distortion ensemble are summarized in Table 3.1-1 and

the results of the DAM analysis of these distortions are shown in Figures 3.1-

2M4, 3.1-2F, 3.1-3M, and 3.1-3F.

A study of the DAM results shown in Figures 3.1-2M - 3.1-3F reveals some

basic problems with the distortions used in the original study. The problem is

that certain of the distortion classes did not exhibit an adequate variation in

perceived distortion. This is particularly true for the case of frequency ;. -

distortion in the ranges 200-400 Hz, 1900..2600 Hz, and 2600-3400 Hz, but is t

also true for radial distortion in the range of 2600-3400 Hz. An examination

of the control parameters for the banded pole distortion shown in Table 3,1-1

indicates that this in a fundamental problem, since the frequency variations

used were already very large when compared to the dimensions of the frequency

bands. In short, the bands used were too narrow for clearly perceivable

distortions are to be generated.

Based on these observations, a new set of banded pole distortlons, based

on or.ly four bands, was generated. As before, the bands were chosen to have

ap~proximately equal frequency content on a MEL scale. The control parameters

for this study are shown in Table 3.1-2. Notice that in this study, the banded

pole distortions were chosen so as to exhibit both pole-frequency and pole-

bandwidth variations. The .-cIults of the DAM tests applied to these'

distortions will be discussed in the following section, .

3.2 Effects of Banded Pole Distortions on Subjective Responses

Figures 3.2-1, 3.2-2, 3.2-3, and 3.2-4 show the effect of frequency

variant pole distortion for 0-420 Hz,, 420-900 lIz., 900-1600 liz., and 1000-3200

l1Y. respectively, From theme figures, it is clear that, for all frequency

ranges, the scales which are most dramatically affected arc SIP (system"
fluttering) and l3F (backgrotmd fluttering). 1lcnce, the effect of quantlzlnpg
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Banded Pole Distortion
Frequency Distortion

Frequency Range (Hertz) CX

Distortion 1 2 3 4 5 6
Band (Hertz)

200-400 20 40 60 80 100 120
400-800 20 40 60 80 100 120
800-1300 50 90 130 170 210 250
1300-1900 50 90 130 170 210 250
1900-2600 100 150 200 250 300 250
2600-3400 150 200 260 300 350 400

Bandwidth Distortion

Variation Factor

Distortion 1 2 3 4 5 6
Band (Hertz)

S400 0 .05 .075 .1 .2 .3
"400-800 .025 .05 .075 .1 .2 .3

* 800-1300 .025 .05 .075 .1 .2 .3
1300-1900 .025 .05 .075 1 .2 .3
1900-2600 .025 .05 .075 1 .2 .3
2600-3400 .025 .05 .075 .1 .2 .3

Table 3.1-1 Summary of Control Parameters for the Banded Pole Distortions
Implemented as Part of the Original Research

SBanded Pole Distortion

Frequency Range (Hertz) Variation Factor

Distortion 1 2 3 4 5 8 1 2 3 4 5 6
Band (Hertz)

50-420 10 20 30 40 50 55 .01 .02 .04 .08 .16 .32
420-900 20 40 60 80 100 120 .01 .02 .04 .08 .16 .32900-1600 25 50 75 100 125 150 .01 .02 .04 .08 .16 .32

4 0 1600-3200 80 160 240 320 400 500 .01 .02 .04 .08 .16 .32

Table 3.1-2 Summary of Control Parameters for the Banded Pole Distortions
Implemented as Part of the Currant Research
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the pole locations for LPC analysis can best be characterized as 'fluttering'

and 'chirping'. It is also clear that all frequency bands result in an

acceptably wide range of perceived distortions. Hence, the new pole

distortions met their fundamental design criteria.

3.3 Coding Distortions 4..

As previously noted, the basic reason for the introduction of new

coding distortions into the distorted speech data base was to add to the

distortion ensemble examples of classes of coding distortions which have become

common since the oriEinal definition of the data bases in 1978. In all, there

were five new classes of coding distortions intrcduced, resulting in a totai of

. 34 new distortions and extending to 94 the total number of coding distortions .

in the distorted speech data base. As always, the new coding disturtion.s were

simulated using general purpose computers, and were designed to haie zero phase

reconstruction whenever possible. If this was not possible, they were designed

to have at least frame-by-frame synchronization with the undistorted speech.

3.3.1 Multi-Pulse Linear Predictive Coder

Since its introduction in 1981 [3.14]. the Multi-pulse Linear Predictive

Coder (MPLPC) has been one of the most extensively reported and studied [3.15-

3.17]] techniques for medium-to-low bit ratc speech coding. For nearly a

decade before 1981, researchers had been searching for ways to improve the

quality of speech at the bit rates between the medium-bit-rate waveform coders

(down to about 16 Kbps) and the low-bit-rate pitch-excited vocoders (down to

about 2.4 Kbps), but little progress had been made. MPLPC is the first

technique to show real promise in this area.

MPLPC is really a form of residual excited vocoder where the excitation

information is generated and encoded it a special way. MPLPC derives its

advantage from extensive utilization of the speech model and the LPC-estimated

vocal tract transfer function. A block diagram of the MPL.PC vocodcr used in
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this study is shown in Figure 3.3.1-1. In this system, the speech signal is

first divided into two channels: the analysis channel, in which the LPC

analysis and coding is performed; and the residual channel, in which the

residual coding is performed. In the analysis channel, the first step is to

apply a pre-emphasis filter of the form

-1 -2
H(z) 1-b I-z -b 2 z 3.3.1-1

where the coefficients of the filter. b and b2. have been set so as to

estimate the spectral shaping affect of the glottal pulse [3.4]. The output

from this filter is then used as input to an aut.ocorrelation LPC analysis

routine which performs a tenth order LPC analysis and gives an estimated vocal

tract filter of the form

10 -n 3.3.1-2

1 - a z
n

n= 1

This 10th order transfer function is then both coded for transmission and, in a -

separate operation, corrected to include the spectral shaping effects of the

pre-emphasis filter, giving the 12th order transfer function

V'(z). 1 3.3.1-3

10

n= 1 .. -

In the residual channel, the original sampled speech signal is first

passed through an all-pass filter whose transfer function is given by

56
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-2 -2
A(z) b2 z +b z +1 3.3.1-4

I+b z 1+b z°2

1 2

This filter has the effect of approximately correcting for the non-minimum

phase components of the original speech signal [3.4]. which in turn, has the

effect of both making the speech signal more peaky in appearance and also

making the vocal tract model. V'(z), more nearly correct in a phase (as well

as in a spectral) sense.

Mke heart of the MPLPC is the Multi-Pulse Estimation and Encoding

functions shown in the analysis channel in Figure 3.3.1-1. This function uses

the phase corrected speech signal, s'(n), and the spectrally corrected vocal

tract parameters, a' . a' 12 , in an iterative procedure to choose a set of

residual pulses to be coded and transmitted. The entire procedure is performed

in frames (60 samples per frame in this study) of which only a small number of

pulses are kept for transmission (2 to 10 pulses in this study). Because of

the sparse nature of the multi-pulse signal, run-length coding can be used to

reduce the bit rate in the MPLPC residual signal.

The iterative procedure for finding the multi-pulse locations and

magnitudus used in this study can be summarized as follows. First, the ,,rdinary

residual signal [eo(n)] is formed, giving

I 12

e 0 (n)= s'(n) - a'(k) s'(n-k) 3.3.1-5

k=l

Next, the modified vocal tract impulse response, hwii), is computed as

5-
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h (n)=0 n=0 3.3.1-6(a)
w

12

Shw(n) = a'(k)k w(n-k) 1< n < M-I 3.3. 1-6(b)

k=_

where -y and M are control parameters of the coder. Then the modified vocal

tract autocorrelation filter, r (n), is computed as
-w

rw(n) h (n) 0 hw(-n) 3.3.1-7

Using r w(n) and h (n), the pulse locations and pulse amplitudes are computed inww

the following iterative procedure. First, the pulse index, p. is set to zero

p <-- 0 ) and f (n) is computed as
p

fp(n)= eo(n) r (n) 3.3.1-8

Then the time index which maximizes If (n)I is found giving N0 , the location of
p

th th
the p pulse (for p=O first). The approximate amplitude of the p pulse is

then computed as

A (N) 3.3.1-9 J
p __ _

M-l I m)

m=°

Once A is computed, the pulse index is incremented (p -- > p+1), and then f (n) . -•
p p

is computed as

f (n) f (n)-A r (n-N ) 3.3. 1-10
p p-p pw p

The above steps are repeated until the desired number of pulse locations,

N ... N are found. The pulse amplitudes found by this procedure are sub-
0 P-I'

optimal, and once the pulse locations are found, a new set of P amplitudes can
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be found *n one step [3.14].

In thii study, the intent was to generate a class of distortions which

were typical of MPLPC, and not specifically to implement any particular

algorithm. Hence, no artual run-length coding was performed and no precise bit

rates were computed. In addition, the unquantized LPC vocal tract parameters

were used to gent- te the synthetic speech.

Another feature of the MPLPC is that once an estimate of the multi-pulse

residual signal is known, it is possible to use that signal to obtain an

improved estimate of the LPC vocal tract parameters. In this study, three

different pulse rates (2/80, 8/80, and 10/80) were combined with original and

improved LPC vocal tract parameters in order to form the six members of the

MPLPC distortion sets.

3.3.2 Adaptive Transform Coder

One of the more successful methods for frequency domain speech coding is
the adaptive transform coder (ATC). The basic concept on which the ATC is

based involves encoding a spectral representation of the speech rather than the

time domain waveform. The steps involved in the coding are: 1) windowing and

transforming a segment of speech, 2) producing a model of the spectrum from LPC

analysis and pitch detection, 3) dynamically allocating a predetermined number

of bits among the transform coefficients using the model spectrum, and 4)

adaptively quantizing the coefficients to the number of bits allocated. The

decoder requires both the quantized transform coefficients and the quantized

LPC parameters of the model spectrum in order to resynthcsize a speech

waveform. From these parameters, the bit allocations and adaptation parameters

which were used in the quantizers can be computed. Resynthesis results from

decoding of the transform, inverse transformation, and overlap-add combination

uf adjacent segments.

Our particular procedure follows closcly with that of Tribolet and
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Crochiere [3.18] with some modifications. The transform used in our analysis

was the Discrete-Cosine-Transform (DCT) which is defined by:

V (k) v(n)c(k)cos[(2n+1))Trk/2M]. 3.3.2-1cjn=O

The inverse DCT is defined as

1

v(n) = - V(k)c(k)cos[(2n+1)nrk/2M], 3.3.2-2
Sk=0 'O•;

where in boLh formulas:

k=O,1, .. ,M-1 and,

c(k) - 1 kO 3.5.2-3
2 k=1,2,...,M-1

Note that this transform is real, and involves computation of M equally spaced

frequency components from zero to the sampling frequency. The reasons for this

particular transform's use include the fact that its coefficients are always

real, it is relatively simple to compute (efficient algorithms involving FFIr's

exist), and it is purported to be immune to windowing effects when quantze"d.

For the balance of the discussion, we will assume an 3kHz samplirng rat.e -

for the digitized speech, since this was the case for all of the speech

materials used in this study. The windows used for the analysis were 256 point

trapezoids with a value of one for the center Z40 points, and tapering linearly

to zero on both sides. Adjacent segments were overlapped by 18 points, making

an overall rate of one frame every 30 ms. A DCT of length 21- was applied for -

each segment.
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b, 2 A .- U. r-2,I * .L-.!! pin..



In addition to the DCT analysis, another analysis was performed

independently on data for spectrum modeling. A twelfth order LPC analysis

using a 256 point windows was performed every 30 msec. Pitch detection was

performed by an interactive. semi-automatic procedure to so as to minimize the

probability of pitch and voicing error. These two components give rise to a

smooth spectrum, a f(k). and a pitch spectrum, or (k), which are combined to a
f p

model spectrum a (k)=a (k)ap(k). The estimate •f(k) was computed using a

s f p -~ --.I

discrete Fourier transform (DFT) for the quantized linear prediction model over

the first half of the unit circle. The pitch spectrum, (t (k), DFT of is
p

computed by windowing and then taking the

p(n) =(n-ml,) 3.3.2-4

where L is the pitch and G is the ratio of the Lth lag autocorrelation term of

the speech segment to the zeroth lag.

The bit assignment was a function of a weighted version of the log of

U (k). This form of the bit assignment was specifically chosen so as to hide . . .

some of the quantization noise under the high energy spectral peaks. The

algorithm was iterative and attempted to allocate B bits over M points,

according to the formula

- 25 -
b(k) max 10, min[int[log 2 (Us(k)af (k)) + 8], Nmax]J 3.3.2-5 .

where b(k) is the number of bits assigned to transform coefficient V (k),
c

iiit[a] truncates a to an integer, and max[a,b] and min[ab] take the maximum

and minimum respectively of the two arguments, Nmax is the maximum number of

bits allowed for any one coefficient, and 8 is the parameter which is

iteratively adjusted to make
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b(k) = B. 3.3.2-6

k=O

The parameters Nmax and B depend on the desired bit rate for the coding.

It is valid to assume that V (k) is a zero mean Gaussian random variable
C

(given only %s(k) for estimation purposes) with variance equal to us(k). The

quantization procedure, therefore, consists of normalizing V (k) by a (k) and

then applying a non-uniform b(k)-bit quantizer optimized for a Gaussian process

of unit variance. Parameters for the quantizer were taken from Max [3.19). _•

In all, N bits per segment are allowed for an (Nx8000)/240=Nx33.3 bits per

second rate. Of these, B bits are 'main information' and N-B bits are 'side

information,' which include LPC reflection coefficients, LPC gain, pitch gain

(G from equation (3.3.2-5), and pitch.

Resynthesis involves identical computation of b(k), a (k), Vf(k), and

a p(k), which are used to calculate the quantized versions of V (k) from the

main information. An inverse DCT is then computed, and an overlap add is

performed with the previous segment. The parameters use to control the

adaptive transform coder are summarized in Table 3.3.2-I.

3.3.3 Subband Coder

In recent years, subband coders for digital speech coding at medium bit

rates have been widely studies in the literature [3.20][3.21]. In the basic

subband coding procedure (Figure 3.3.3-1), the speech is first split into

frequency bands using a bank of bandpass filters. The individual bandpass

signals are then decimated and encoded for transmission. At the receiver, thc

channel signals are decoded, interpolated, and added together to form the

received signal. The subba-nd coder derives its quality ad.antage by limiting

the quantization noise from the encoding/decoding operation largely to the band
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Bit Rate Number Bits In Maximum Number Number of Bits
Side Information of Bits Per For Transform
Per Frame Coefficient Quantization

16 kb/s 51 5 445

12 kb/s 44 4 316

9.6 kb/s 44 4 244

8 kb/s 44 4 204

6 kb/s 44 4 136

4.8 kb/s 44 4 100

Table 3.3.2-1 Control Parameters for the Adaptive Transform Coder (ATC-2)
Coding Distortion
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in which it is generated, thereby taking advantage of known properties of aural

perception [3.22].

The basic component of octave-band tree-structured subband coders is the

two-band analysis/reconstruction system shown in Figure 3.3.3-2. In this

system, the analysis is performed by the two frequency selective filters,

H0 (eJW) and H (eJW), which are nominally a half-band lowpass and a half-band

highpass filter respectively. To preserve the system sampling rate, both

channels are critically decimated at a rate of two-to-one, resulting in the two

sub-sampled signals. YV(ej) and YVeIW ), given by

Yo0(ej• (1/2)[Ho0(eJ I)X(eJ)/2)+Ho(-eJ /)X(-eJ/) 3.3.3-1a

Yl(eJW) = (1/2)[H (eJ / 2 )X(e )+H (-e )X(-e 3.3.3-Ib

In the reconstruction section, the bands are recombined, giving

X(eji) (I/2)[H0(e j)G0(eJW)+Hl(ejW)Gl(eJW)]X(eJw) 3

+(1/2)[H0(-e W)G0(e jW)+H (-ejW )G1(e JW)]X(-ejW)

3.3.3-2

The frequency response of the two-band linear system component is contained in

the firsL term of equation 3.3.3-2. while the second term contains the

aliasing. In the classic QMF solution, the aliasing is removed by defining t..;

reconstruction filters as

G (eJ') = H (-eJE) 3.3.3-3a
0 1

Gl(ejW ) = -H0 (-eJW) 3.3.3-3a

00
This assignment forces the aliasing to zero, and results in a total system

frequency response, C(eJW), of

C(eJW) (1/2)H 0 (e J)H (-eJ)-(1/Z)Hl(c)H0(-e 3.3.3-4
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In the conventional solution, the high-pass filter [H (eJW)] and low-pass -

filter [H0(e ] are chosen to be frequency shifted versions of each other,

i.e.

H (e)=Ho(-e) 3.3.3-5

For this class of analysis/reconstruction system, exact reconstruction requires

that

H~ej') -HteJW) 2 3.3.3-6

A number of authors using various methods have aesigned FIR filters which

approximate this condition. The analysis/reconstruction systems used in this

study all were based on quadrature mirror filters design by Johnston [3.23],

and the systems were simulated as described by Barnwell [3.21]. The APCM

coders used in this study are based on work by Jayant [3.24]. The adaptive

quantizer in these systems are controlled by the dynamic steps-size A(n), given

by

A(n) = A(n-i) x F[c(n-l)] 3.3.3-7

where c(n) is the nth code word and F[ ] is a preset control function. The

contiol functions for the APCM coders used in this study are given in Table

3.3.3-1, while the control parameters for the individual systems are shown in

Table 3.3.3-2.

3.3.4 Channel Vocoder

The channel vocoder which -#as realized was a thirty band system which

occupied the frequency range of 0-3.6 kilohertz. A block diagram for each of

the channels (analysis and synthesis ports) is given in Figure 3.3.4-1.

The filters in both the analysis and synthesis filter banks were all

realized using recursive elliptic filters implemented as a cascade of second -
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APC1 Coders for Subband Coding

Magnitude of Code Word (Ic(n)I]

Number of Bits 0 1 2 3 4 5 6 7
per Sample

4 .9 .9 .9 .9 1.2 1.6 2.0 2.4

3 .85 .9 1.4 2.0

2 .85 1.9

Table 3.3.3-1 Control Function F[ ] for the APCM Coders Used in the Imple-
mentation of the Subband Coders

4I

Subband Coder Control Parameters

Coder Number 1 2 3 4 5 Harmonic Bit Rate
of Scaling

Bands

SUB-1 5 4 4 2 2 2 No 16000

SUB-2 5 3 3 2 2 2 No 14000

SUB-3 4 4 3 2 2 No 12000

SUB-4 5 4 4 2 2 2 Yes 8000

SUB- 5 5 3 3 2 2 2 Yes 7000

SUB-6 4 4 3 2 2 Yes 6000

Table 3.3.3-2 Control Parameters for the Six Subband Coders Implemented as
Part of This Study
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order sections. All of the filters had an identical bandwidth of 120 Hz. The

charact-.t•stics of each of the filters are given in Table 3.3.4-1. Exactly the

same filters were used in the corresponding analysis and synthesis banks for

each cho-nne I.

The filtered speech signal x:i(n) was divided into frames of N samples.

After some experimentation, N was chosen to be 215 in the final realization.

Then, for each frame, the normalized square root of the energy of the windowed -

signal xi(n) is computed as

N 1/2

S[w(n)x(n)] 2

22n= .1y. is) . . . .. . .. . .3.3.4-1i

n= 1

where m is the frame number and n indexes through all the points in the frame.

A Hamming window function was used used for w(n). given by

w(n) =0.54 - 0.46 cos(L'-2) 3.3.4-2
N

For the channel coding, a uniform quantizer was used for the positive -"

signal yi(m). In the final realizations, the numbers of bits used werc

9,10,11,12,14 and 16 (unquantized version) respectively. -

The pitch period estimations used for the channel vocoder were exactly the

same as those use for the adaptive transform coder (see section 3.3.2) These

P pitch period signals were generated using a scmi-automatic pitch dctccticn

program which minimized pitch and voicing errors. The pitch pcriods were

estimated every 120 samples (lb msec). The excitatiolo signal, p(n). is

0 . generated as follows: for unvoiced sounds, a uniformly distributed white random O
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Filter Bank for the Channel Vocoder Implementation

Filter # Low Cutoff High Cutoff Order
Frequency Frequency

(kHz) (kHz)

1 0 120 8
2 0.120 -. 240 12
3 0.240 0.360 12
4 0.380 0.480 12
5 0.480 0.600 12
6 0.600 0.720 12
7 0.720 0.840 12

8 0.840 0.960 12
9 0.960 1.080 12

10 1.080 1.200 12

11 1.200 1.320 12
12 1.320 1.440 12
13 1.440 1.580 12
14 1.560 1.680 12
15 1.680 1.800 12
16 1.800 1.920 12
17 1.920 2.040 12
18 2,060 2,160 12
19 2.160 2.280 12
20 2.280 2.600 12
21 2.600 2.520 12
22 2.520 2.640 12
23 2.640 2.760 12
24 2.780 2.880 12
25 2.080 3.000 12

3 000 3.120 12
27 3.120 3,240 12

S28 3.240 3.360 12
29 3,360 3.480 12
30 3.480 3.600 12

Table 3.3.4-1 Filter Bank Lharacteristics for the Implementation of the Channel
Vocoder Distortions
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Control Parameters for the Channel Voocder Distortion

System Number Bits Per Channel Bit( Rate per Channel
(Bits/Second)

1 9 600

2 10 667

3 I1 733

4 12 800

5 14 933

6 16 1067

Table 3.3.4-2 Control Parameters for the Channel Vocoder Distortion. For this

Distortion, the Sampling Rate was 8 kHz., the Frame Size was 120
Samples, and the Number of Channels was Thirty.
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process with standard deviation GN is used; for voices sounds, a periodic

pulse train with the correct period and amplitude G is used. The choice of
p

the gains GN and G was critical. A ratio G /G =10 was found to be
p p N

appropriate.

In the receiver, the excitation p(n) is multiplied by the transmitted

signal ti(m) to create z2(n). This signal, in turn, is filtered to generate

the channel signals. s.(n). which are all smnmed to create the output speech
-. o

signal. The control parameters for the channel vocoder are summarized in Table
I..!

3.3.4-2

3.3.5 ADPCM with Noise Feedback

In this context, noise feedback refers to a cjass of analysis procedures,

introduced by Atal and Schroeder [3.25], which can be applied at the

transmitter of either an APC and ADPCM speech coding systew in order to

* systematically control the spectral shape of the coding noise generated at the

receiver. The reason for doing this is to take advantage of the aural noise

masking effect which has been studied in psychoacoustics. This effect,

cc'npactly stated, is that in aural perception, a strong signal souice will

tend to mask less strong noise sources which are located close to it in

frequency. Hence, it is desirable to shape the coding noise in such a way that

the noise energy is placed near the speech signal energy in the short-Lime

frequency domain.

The fundamentals of the noise feedback technique are illustrated in Figure

3.3.5-1. A key feature of this technique is that it is applied only at the

transmitter of APC or ADPCM systems, and the receivers which are used are

standard, unmodifled APC or ADPCM receivers. Both APC and ADPCM cncodc a

residual signal, e(n), which is obtained by passing the original signal through

ei the-r a variable (AI'C) or fixed (ADPMI) whitening filter. In the traditional .

system, after quantizatlon, the residual signal, E(z.). is given by
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E(z) = [1-P(z)]S(z) + [1-P(z)]A(z) 3.3.5-1

where P(z) is the transfer function of the prediction filter, S(z) is the z-

transform of the original speech signal and A(z) is the z-transform of the

quantization noise signal. a(n). At the receiver. an estimate of the original

signal, S'(z). is created by passing the transmitted residual signal through

the inverse whitening filter, giving

S'(z) E(z)/[I-P(z)] S(z) + A(z) 3.3.5-2

Hence, in an ordinary ADPCM or APC. the output signal is the sum of the input

signal and the quantization noise signal. Since the quantization noise is

nearly white, then the noise is distributed uniformly across the entire

frequency band, independent of the short-time frequency spectrum of the speech.

In a noise feedback approach (Figure 3.3.5-1), the quantization noise is

explicitly filtered separately from the speech signal, and the residual signal

can be written as

E(z) [1-P(z)]S(z) + [1-F(z)]A(z) 3.3.5-3

giving an estimated speech signal at the receiver of _

S'(z) E(z)/[1-P(z)] S(z) + [l-PF(z)1A(z) 3.3.5-4
n [-P~z) Ai-..

Hence the approximately white noise signal, A(z), is passed through the filter

whose transfer function is given by [l-F(z)]/[1-P(z)]. Clearly, by varying the

characteristics of F(z) on a frame-by-frame basis (since P(z) is always known

whether it is fixed or time-varying), it is possible to shape the noise to any

desired shape. An important point here is that the minimum noise energy always

occurs for no noise shaping, i.e. F(z)=P(z). Hence, the effect of noise
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feedback is always both to shape the noise and to increase the overall noise

energy.

In this study, the coding system utilized was always an ADPCM coder with a

single tap fixed predictor, and the noise feedback filter was designed so that

10

1-La z-n
azn

S=n=1
1-P(z) 10

a -y anzn

n1n=-1

where y is a control parameter, and P(z) .9z The control parameters used

for this distortion are shown in Table 3.3.5-1.

3.4 Effects of Coding Distortions on Subjective Responses

3.4.1 The Effects of Multi-Pulse LPC on Subjective Responses

The effects of MulLi-Pulse LPC on subjective responses are illustrated in

Figure 3.4.1-1. There are several point which should be noted here. First.

the Multi-Pulse LPC is capable of generating quite high quality systemis at

relatively low bit rates. In fact, the only coding system in this study which

resulted in better quality was an ATC which operated at about twice the

equivalent bit rate of the Multi-Pulse LPC. Second, the technique of using the

estimated excitation function to improve the LPC analysis (systems 2, 4, and 6

of the MPLPC distortion) gives a consistent improvement for the lowest bit

rates (2/60) but has little impact at the higher rates. Third, the MPLPC tends

to excite a broad class of parametric distortion scales, including SF (system

fluttering). SI (system highpass), SL (system lowpass), and SD (system

distorted) as well as BF (background fluttering). However, on many of these

scales the responses are hi-modal depending on whether there are enough pulses
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Control Parameters for ADPCM with Noise Feedback

Coder Quantizer Y Number of Predictor
Levels LPC Taps Coefficient

NF-I 4 .8 10 .9

NF-2 6 .8 10 .9

NF-3 8 .8 10 .9 I

NF-4 12 .8 10 .9

NF-5 16 .8 10 .9

NF-6 32 .8 10 .9 g

ADP- 4 1 -4- .9

ADP-2 6 1 -. 9

ADP-3 8 1 -- .9

ADP-4 12 1 -- .9

Table 3.3.5-1 Co.itrol Parameters for the ADPCM Systemu with and without
Noise Feedback Used in this Study

I

78. -

78'.



MP- LPC

99

V 79

469 36 - o

oi ii I ! :3 Nv P-5 "

26 + MP-4
HP-3

16 N P-2
0 ' '1

SF SH SD SL SI SH 1SQ BN BB BF BR IBQ INTL PLSN ACPT ACPT

Figure 3.4.1-1 Diagnostic Acceptability Results for Multi-pulse LPC.
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Figure 3.4.2-1 Diagnostic Acceptability Results for Adaptive Transform
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in the residual representation to support the true pitch. If this effect is I

corrected, most of the perceived distortion occurs on the SF and BF scales. --

3.4.2 The Effects of the Adaptive Transform Coder on Subjective Responses

The results of the subjective quality evaluation of the ATC is shown i..

Figure 3.4.2-1. The ATC clearly lives up to its billing as a high qual ty

waveform coder for medium bit rates, with near toll quality performance -at 16

Kbps. Like the MPLPC, the ATC excites a number of parametric quality scalcs.

*'" Clearly, the ATC distortion is mostly perceived as SF (system fluttering) and

BF (background fluttering). However there are also non-trivial deviatirns

shown on the SN (system nasal), SD (system distorted), and SL (system lowpass)

scales. The spread of subjective quality results for this distortion is

excellent, so the fundamental design criteria as been met.

3.4.3 The Effects of the Subband Coder on Subjective Responses

Figure 3.4.3-1 shows the results of the subband coder distortions on

subjective quality. Like all of the previous distortions, the subband coder

distortion exhibits a good range of subjective responses. The subband coder

also exhibits a distinct bi--modal behavior for a number of parametric scales,

specifically SF (system fluttering), SN (system nasal), and BF (background q

fluttering). This is a direct reflection of the inclusion or exclusion of time

domain harmonic scaling in the subband coding system. The basic subband coder

distortion shows up mostly on the SD (system distorted) scale, while the TDFIS

excites mostly the SF (system fluttering), SN (system nasal), and BF

(background fluttering) parametric scales.

3.4.4 The Effects of the Channel Vocoder on Subjective Responses " "

The subjective results for the Ch-nnel Vocoder distortion are shown in

Figure 3.4.4-1. Of all the coding distortions in this study, the channel

vocoder was the least successful in generating a good range of subjective , q
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responses. However, the results are still adequate for use in the subjective

data base. It is clear from Figure 3.4.4-1 that most of the channel vocoder

distortion shows up on the SN (system nasal) and BN (background noisy) scales.

3.4.5 The Effects of the ADPCM with Noise Feedback on Subjective Responses

Figure 3.4.5-1 shows the results of the subjective quality tests applied

to the ADPCM-NF distortion. As can be seen from Figure 3.4.5-1, this j
distorLion exhibits a good range of subjective responses. Almost all of the

distortion shows up on the SD (system distorted) parametric scale, as istypical of many waveform coder systems. One of the claims made for the noise •feedback approach is that for equivalent bit rate systems, noise feedback

generally results in improved quality over systems without noise feedback.

Figure 3.4.5-2 shows the results of subjective tests applied to equivalent

ADPCM systems without noise feedback for the four lowest bit rate systems.
I- A

Clearly, from these tests it appears that there is no measurable advantage to

using noise feedback.

3.5 The Effect of the New Distortions on the Correlation Analyses

Once the new distortions were incorporated into the existing data bases.

extensive tests were conducted to find the impact of the new distortions on

both the correlation coefficients computed in this study and those computed in

previous studies. The basic result of these analyses was that the correlation

coefficients computed on the old data bases and those computed on the new data

bases were very similar, and all the previously stated results were still valid

for the expanded distortion ensemble.
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Figure 3.4.5-1 Diagnostic Acceptability Results for AIDPCM with Noise Feedback.
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CHAPTER 4

MODELING OF HIMIAI HEARING FOR OBJECTIVE
SPEECH QUALITY ASSESSMENT

4.1 Background and Theory

Distortions of speech resulting from coding can only be detected if the

magnitude of the distortion is greater than the resolution of the human

auditory system. Once a distortion is perceivable, a subjective evaluation of

the degree of distortion relates to the scaling properties of the auditory

system. (The auditory system includes both peripheral and central components.)

Our modeling approach will not deal specifically with speech perception, but

rather, with the basic psychophysics of hearing. We will specifically restrict

ourselves to look only at differences in coded and uncoded speech and try to

quantify these differences. This approach obviously cannot address all issues,

but for the coders under consideration it should be of some merit. Due to the

lack of higher order modeling, it is expected that our models will more readily

agree with subjective results for waveform coder type distortions than more

complex distortions. Some of the key issues with hearing will be frequency, -1
temporal, and intensity resolutions as well as their perceptual scalings.

Frequency differentiation appears to be comprised of at least two separate

phenomena, one for stimuli composed of harmonically related components (pitch)

and another for more general stimuli.

Pitch perception can be accurate to within 0.3%, but is applicable only to

signals with specific periodicity. When the complex tones (stimuli composed of

multiple sinusoids) have inharmonic components, (roughly seven or more) they

cannot be perceived individually. This is the point where the pitch detction

ability of human observers becomes too cnnfused to function. Currcnt

indications ure that pitch perception is a highly central neural process which

must be modeled at a level much beyond the auditory periphery, and will
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therefore be considered beyond the scope of our analysis.

Frequency resolution in general signals is much poorer than pitch

perception for periodic signals and is determined by other basic properties.

Most theories use the notion of critical bands which corre3pond to the presumed

filtering action of the auditory system. None of the many attempts to explain

psychophysical measurements of critical bands measurements solely on the basis

peripheral auditory physiology up through the auditory nerve have been

satisfactory. It is probable that a portion of this filtering is effected in

more central neural mechanisms, and that such data as auditory nerve tuning

curves would provide an incomplete model for speech perception. We therefore

believe the most appropriate frequency analysis should be based on

psychoacoustical measurements. Table 4.1-1 lists a set of experimentally

determined critical bands which span a large fraction of the audible spectrum.

Note the non-uniform bandwidLhs and center frequency spacing.

A well-known property of linear filters is the inverse proportionality of

temporal and ir'quency resolution (bandwidths versus risetime). Consequently,

as a filter'- bandwidth increases, more precision in timing is possible. Nerve

latency data suggests a lower limit for auditory resolution of around 2 ms.

Low frequency stimuli give significantly worse resolution due to the

corresponding narrowei bandwidths of the low frequency channels, however, and

temporal resolution in this range is roughly 11 ms. Although such stimuli as

clicks can be resolved even when separated by as little as 2 ms, undesirable

effects emerge when speech perception is modeled with such acuity. For

example, pitch periods of a voiced segment of speech would be resolved. Since

our analysis does not include the provision for using this information, an

overall model resolution of no bct.ter than 10 ms for any channel is

appropriate.
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I

Filter Number Center Freq.ency Bandwidth

1. 50.00 70.000
2. 120.00 70.000
3 190.00 70.000
4. 260.00 70.000 ./'-

5 330.00 70.000
6. 400.00 70.000
7. 470.00 70,000
8. 540.00 77.372
9. 617.37 86.005

10. 703.37 95.339
11. 798.71 105.411
12. 904.12 116.256
13. 1020.38 127.914
14. 1148.30 140.423 a
15. 1288.72 153.823
16. 1442.54 168.154
17. IblO.70 183.457
18. 1794.16 199.776
19. 1993.93 217.153
20. 2211.08 235.631
21. 2446.71 255.255
22. 27C1.97 276.072
23. 2978.04 298.126
24. 3276.17 321.465
25. 3597.63 346.136

U

Table 4,1-1 Critical Band Center Frequencies and Bandwidths Used.
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Intensity is perceived as a nonlinear function of the energies in the

various critical bands. The first step of analysis is filter output envelope

detection. Various mechanisms have been postulated, which include many

different types of nonlinearity followed by linear filtering, resulting in a

slowly varying signal for each channel. The second step involves relating the

envelopes to perceived loudness, JND's (just noticeable differences), cr other

me&sures.

Masking is a mechanism undoubtedly arising from both peripheral and

* ctntral processing. Critical band measurements often involve steady-state

signals masking other signals, or simultaneous masking. Critical band

decompositions naturally model this masking. Another form of masking occurs

between signals separated in time. Most of the nonsimultaneous masking

theories involve exponential decay of masking functions with time with or

without frequency-dependeat time constants.

4.2 Analysis Procedures

To assess the quality of coded and distorted speech using aural models, we

must take into account the audibility of differences in the signals. Since we

are assuming all of the distortions in the study are perceivable, the task

becomes one of quantifying these differences.

The ear's frequency resolving ability strongly suggests a spectral

analysis should be done to both the reference (original) speech and the

distorted speech. Hence, in this study, analysis paralleling critical band

filtering was performed. Of the many alternatives for the computation of the

critical band-stpcctrum, such as LPC spectra, DFT's of windowed speech (Time
* -S

dependent Fourier Transforms), and filter bank analysis, we chose the first and

the last. The car shows little sensitivity to phase as long as components are

not within critical bands, and appears to respond to energy as a function of

frequency. Our .:oalysis involved short-time spectral densities. We will
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denote the energy: IV(n.s,d.m)I where n is the time index, s the speaker, d

the distortion (d=i means no distortion) and m is a discrete variable

representing the critical band over which the energy is summed. In the LPC

method, a high density DFT of the LPC spectrum is computed, and the energy in

critical bands is summed. The windows for summation in the frequency domain

should look like Figure 4.2-1 for auditory modeling. The pre-emphasis of

roughly 3 dl3/octave inherent in the wider bandwidths must be compensated. The

problem with the previously mentioned computations is that although bandwidths

inrrease with frequency, time rennlution '7 not proportionaily enhanced. To

this end, we perform digital filtering and envelope detection instead, where

critical band energies can be sampled faster for wider bandwidth channels than

narrow ones.

Once critical band spectra were computed for original and undistorted

data, comparisons were made, Sensation and auditory nerve firing rates require

a nonlinear scaling of the energy envelopes. For an isolated filter's energy

at an isolated time (one frame), the critical band spectral distance between

the reference and distorted speech frame for that channel should be a monotonic

function of the magnitude difference of the non-linearly scaled energies in the

two. Hlere, the distance would be of the form:

D = [If [V(ns,4,m)] - f [V(nsdm)I]j 4.2.1m 1 . ... _ _.:

where fl( ) is a non-linearity such as a logarithm or power function.

Combination of the different frequency band contributions to the overall frame

distance requires both a nonlinearity applied to D as well as a weighting
m

which we assume will depend on the band's energy.
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Figure 4.2-1 Critical Band Filters.
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F = [f2(V(nsd mf 3 (Dm)] 4.2.2
n=O _•

where the index of summation, n, covers all critical bands. Previous work

suggests that f 3 ( ) should be I 1Pwhere I' is a positive integer, and f 2 ( ) is

a monotonic non-linearity such as logarithm or a power function. Combination-

of frames to arrive at an overall measure is accomplished in a similar mannier:

Wnf 4(Fn)
Overall distance n .3

w
n

n

where W is a weighting function denoting frame n's overall importance, andn

r4( ) is usually the inverse function of f 3 (). In our study, we only used

f3 I P and f 1 1/P Note that these choices amount to computing L

norms for L dimensional vectors comprised of the nonlinearly transformed

magnitude spectral samples.

This established framework allows for a large number of theories to be

tested. The f ( ) nonlinearity can be modeled by the JND structure for bands,1

or instead by the form that perceived loudness takes on as a function of

intensity. In the first case, a logarithm should be used, and in the second, a

non-integer power function is appropriate. By the same logic, f 2 ( ) should

take on a similar form, although the two non-linearitics need not be the same.

We can also allow the functions to estimate at maximum and minimum value. As

mentioned, f ) and f4( ) are of the form and T
3 and { . This allows

frequency based combinations to follow as !, norm measures. Another morep

complex set of measures we called Klatt measures were employed, and will be
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"described in more detail below.

4.2.1 Log Spectral Distance Measures

According to the notion that the perceived intensity of one stimulus to

another is proportional to the ratio of the two intensities (Fechner's law) or

that intensity resolvability is proportional to intensity (Weber's law), the f

nonlinearity should be logarithmic. With the notation that F(n,s,d) is the

frame distance for speaker s, frame n, and distortion d

L- 1 I/P

m0V(n,s.d.m)m=O Vnsdm

F = F(n,s.d) ------------------------------------- 4.2.1.1

Iv(n,s,O.m)l'
m=O

was used.

4.2.2 Power Function Spectral Measures

Psychophysical measurements point to significant modeling errors obtained

from application of Fechner's or Weber's law. A more accurate model states

that the perceptual intensity doubles for every N dB increase (N is usually set

to 10). Therefore, if we let i and i be the perceived intensities, and i

lp 2 p

and i be the actual intensities, the relation is:
2

log2 (-ll) N log 1 o (A-) 4.2.2.1

'2p 2

or

lp 2 (N/o)log (1 ) 4.2.2.2

iZp 2
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II.,

Band Number We i ght

1 .003
2 .003
3 .003
4 .007
5 .010
6 .016
7 .016
8 .017
9 .017
10 .022
11 .027
12 .028
13 .030
14 .032
15 .034
16 .035
17 .037
18 .036 "
19 .036
20 .033
21 .030
22 .029
23 .027
24 .026 4
25 .026

Table 4.2.2-1 Articulation Index Weights
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2(N/l0)(log2 10) (log2 ( 1)) 4.22.3
2

log2 [(il/i 2 ).3N/10] 4.2.2.4

S(i/)"03N 4.2.2.5

Therefore perceived intensity grows as magnitude to the .06N power. If N=10,

this exponent becomes .6. A general form in which the exponent is left a free

parameter, ', would result in:

f 1 (x) = x 4.2.2.6

Therefore:

L-I I /P

S(V(n, s, ,m))'YjV(n, s, ,m) -V(n, s,d,m)81

F m=O.--------------------------------------------- 4.2.2.7n
L-I1

m=O

4.2.3 Articulation Index Approximation

Although our goal is to characterize the quality of speech rather than its

the intelligibility of speech, there should be some similarities in estimation

methods for both. One set of procedures useful for predicting intelligibility

e from a description of signal to noise ratio as a function of frequency falls

under the category of articulation theory. The computed value, articulation

index, can be calculated in a variety of ways. Kryter's method [4.1] divides

the frequency scale into 1/3-ocLave bands. Signal to noise ratios (SNR's in

dB) are computed for each band, with a maximum of 30 d1B, and a minimum of 0 du

allowed in each band. Band specific weights, listed in Table 4.2.2-1, are

applied to each SNR, and these weighted values are summed.
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There are a number of differences between this method and our approach.

First of all, our filters are not 1/3-octave, but rather are critical bands. It

anything, our analysis should be an improvement over Kryter's analysis which is

only a critical band approximation. The weights which are used for the 1/3-

octave filter bank can be interpolated to produce the appropriate weights for

our procedure. Second, in our framework, only approximate SNR's are computed. .4

"this is accomplished by observing the differences in the original and the

distorted filter bank signal energies- Third, we do not look at long term

SNR's, but merely averages over many frames. With the differences kept in

i ind, our version of the articulation index gives a frame measure of:

I,-1 -
Iq

Fn WmmaxO0. min[2Ologl 0 V(4,m)-201ogloIV(4,m)-V(dm)1,30]H. 4.2.3.1a

m=O

L-i 4

WmN 4.2.3.1b
m m

M=O

So that additicoal degrees of freedom could be incorporated into the model, we

allowed an energy dependent frequency weighting as well as 1L norm forP

frequency band combinations. The resulting frame distances:

SL-l I/P

SIV(n,s,j'm)l•Y(N)P

F 4.2.3.2
n

L-1 1

m=1

appear similar to the log spectral distances.
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4.2.4 Forward Maskinf, Models

Simultaneous masking of signals is modeled by the critical band analysis,

which describes masking as a function of frequency separation. Temporal .-P

masking, masking of one stimulus by another separated in time, also occurs.

Because the effect is more dramatic when the masker precedes the target.

(forward masking) than the reverse (backward masking), only forward masking was

considered. Various experiments indicate that masking level decays

exponentially in dBD with linear time [4.2] separation. The time constant for a

1000 liz stimulus is roughly 75 ms. In other words, if the masking level of a

stimulus is 80 dB at t=0. at t=75 it will be 80/e dB=30 dJ3. Denote T the time

constant for frequency m. If the masking level at time t for frequcncy m and a

stimulus which is no longer present is M(tm), it would be M(t,m)/e at t=t+T

or M(t+tl m)=M(t,m)/e. This amounts to a frequency dependent smoothing for .1

each filter's envelope which can be accomplished by:

M(n+1,sj,m) r(m)M(ns,4,m)+20log V(n+i,s,],m). 4.2.4.1
10

The constant r(m) specifies the amount of smoothing and is frequency dependent.

The new values, M(n,sj,m), can be placed into the same framework as V( ) in

the log spectral distance measures. .J

4.2.- Klitt-Type Measures

One interesting frame distance measure which was originally formulated for

speech perception modeling has been presented by Klatt [4.3]. This measure was

based on the observation that certain distortions (e.g., addition of a spectral "-'4

tilt) may result in large psychoacoustic differences, but charge the perceived

phonetic units very little. Four basic points were proposed by KMatt:

1) Frequency decomposition should be made which is based on critical-
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bands.

2) Intensities within the frequency bands should be measured in dB SPL.

3) The slopes of the log critical-band spectra should be compared rather

than the spectra thcmselves.

4) Differences in slopes of the log critical-band spectra should be

weighted in a manner which weights peaks more than valleys.

KIaLt's basic distance was of the form

DI2  L W(i)[Sl(i)-S2(i)] 4.2.b.1
i

where SI and 32 are spectral slopes and W(i) is the weighting for each band.

0 By suitable adjustment of free parameters, correlation between

experimentally obtained phonetic distance judgments using isolated, synthetic,

- steady-state vowels and the above measure achieved a correlation of .93 using

this objective measure. Our feelings were that although these tasks are quite

I- different from ours, some of the same factors may be involved in subjective

* -phonetic distance judgments as in subjective quality evaluations.

4.3 Objective Measures

In this section we will describe the implementation of the objective

measures which were introduced earlier.

* 4.3.1 Filter-Bank Analysis

L The critical-band filters were designed in accordance with measurements

- and theory presented by Patterson [4.4]. Filter shapes were Gaussian. with the

0 center frequencies and bandwidths listed in Table 4 1-1. Twenty-five filtcrs

were used to cover the spectrum 0-4000 lIz. All filters were designed using a

97-point Ilanming window. Finite impulse response filtering was performed on

the original and distorted waveforms, ard IMS values were compute! ,very 10
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msec using a 20 msec Hamming window.

4.3.2 Frame Combinations

The main concentration of our objective measures work involved exploration

of how the 10 ms frames from the distorted and original speech :signals should

be compared. For a given set of frame distances, F(n,s,d), objective quality

was computed by simply averaging F(ns,d) over n. In the previous study,

Barnwell and Voters had found that weighting frames by some function of lb-ir

energies did not improve the performance of the objective measures tested

[4.5]. We use this result as justification of our procedure.

4.3.3 Frequency Weighted Objective Measures

In the ..,g spectral measures, frame distances were of the form shown in

equation 4.2.1.1. Here L=25. and the m index denotes the different critical

band channels. The free parameters were -y and P. The values used were

,y=0, 2,4 8. .1.0, and P=.2,.5,l,2,3.

The power function spectral measures were as in eqwjtion 4.2.2.7, with

free parameters -y, P, and S. The values used were -Y=0,1,; PzI,2,3,; and

6=.2,.3,.6, 1.0, 1.5. and 2.0.

The articulation index approximation as in equation 4.2.3.2 left the free

parameters '0, .2,.4, .6,1.0, and P=.2-,.5,1,2, and 3. Also, in irder to

investigate the effect of the value of the weighting vector W listed in Table

9 4.2, all experiments were repeated with no weighting, i.e., a weighting vector

with all elements of W equal to 1. <:.

The forward masking models in accordance with Duifuis [4.2] allowed

0 exponential decay of the log intensities. The frame measure was generated as

show- in 4.2.1.1 but with M from equation 4.2.3.2 substituted for V. BeCLause

of earlier results, we fixed -y at 0, and let P and r(m) (specifying ratc of

decay - see equation 4.13) vary. The range for P '.,'3 .,.J,1,2, and 3, and

r(m) varied over the range 0,.2,. 5, .9,.95. ?i.,oto .P. i " va.ae 0 is the
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extreme of case of no masking or a time constant of 0, and the other values

lead to time constants of 6, 14, 95, and 195 ms respectively.

For the KlaLt-type measures, we use Klatt's basic form as listed in .

equation 4,2.4.1, with slight modification. First, we define the slope of the

spectrum as

S(ns,dm)=20loglo[V(n,s d,m+l)]-20loglo[V(n s.d,m)] 4.3.3.1

where V( ) is as before. Due to the fact that we have 25 spectral values, the

index varies between 1 and 24. Not wishing to restrict ourselves to 1,

norms, we modified 4.2.4.1 to allow a free parameter, P, which gave a frame

distance:

24

F(n,s,d) = • W(m)IS(n,s,4,m)-S(n,s,dm)IP 1/P 4.3.3.2

m='I

W( ) depends on both the distorted and original frames, and is specified by -

W(m)= [W(j,m)+W(d,m) ]12, 4.3.3.3". "

where W(dm) depends solely on the spectrum V(ns,d,k), for k=1 to 24. .

C1

W(d,m) =
[Cl+maxV(n, s,d,k)-V(n, s,d,m) ]

k

C
2+ 4.3.3.4

[C 2 +local V(ns.d,m)-V(ns,d,m)]
max mI4

The max V(n,s,d,k) term indicates the maximum value V(n,s,d,k) achieves as k is
m

varied, and local V(n,s,d,m) indicates the value V(n,s,d,k) takes on at the
max m

closest peak to frequency band m. The free parameters are C C., and P.
1I '
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Values chosen were Ci=10,20,30,40,50,60,100, and 1000. C = 5,1.2,10.100, and
1 2

1000, P-.5,1.2. Please note that for the cases C1 and C2 large, the weighting

approaches 1 for all frequencies. ,.6

4.3.4 Trained Measures

Outside of critical bands, minimal auditory interaction takes place. In

speech, however significant correlations exist across bands. In addition, for Al

the set of distortions in our tests, individual frequency band distances should

show some correlation with each other. A way of accounting for this would be

to find the best linear combination of frequency based distances for predicting

subjective quality. This procedure would amount to choosing a weighting

vector, W(m),m=1,2,.... .25, to maximize objective and subjective quality i

correlation. In this study, optimum vectors were computed for four contexts.

The first two contexts weighted different frequency bands for the log spectral

measure as In equation 4.2.1.1, but with the constraints, y=0 and P=2, giving

the form: 6

2 1/2
W log I

m V(n, s, d,m)
F ---------------- -4.3.4.1 .
n

IsI

In one, all 25 bands were employed, whereas in the second, five bands were

determined by summing filter energies in groups of 5 at a time. A similar

procedure was performed for the power-law spectral distance, where ^Y, 8, and P

for equation 4.2.2.7 were set to 0,2, and 2 respectively, giving frame

distances of:
r
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F W IV(n,s,0,m)8-V(n s•dm) 8 12  1/2 4.3.4.2
n m - - -

m - .

In this, both 5 and 25 band analyses were performed.

The two results of each analysis of interest are the actual weighting

vector as well as the correlation achieved.

4.4 Results

The computed objective measures were calculated with the composite

acceptability subjective measure described in Chapter 2. The figure-of-merit

used in this portion of the research was the magnitude of the estimated

correlation coefficients, p.

4.4.1 Log-Spectral Distance Measures

Log-spectral distance measures of the form given in equation 4.13 were g

tested using the free parameters given in section 4.3.3. The following

observations were made.

1. For P held fixed, and y varied, best correlation resulted from y=0.0, for

all values of P. Furthermore, the degree of correlation invariably

decreased as y moved further away from 0.0 in value.

2. For 'y held fixed, and P varied, best correlation resulted from P-2 or P=3 :6- O

with P=I giving reasonably close performance. Vdlues of P less than I

were inferior in performance to the larger values in all cases.

3. Of the 25 combinations of parameters, the top five were:
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R P 'Y Id (correlation coefficient)

1. 2.0 0.0 .715

3. 3.0 0.0 .705 ''""

4. .•0 0. 0 . 703_---o

5. 3.0 0. 2 .702 ,•.

Subsets of the distortions which fit into particular categories were

observed also. ADIC• and CVS type distortions led to almost perfect .-

correlation, as one might expect since the set is highly restrictive. Larger

sets which Included pole distortions, coding distortions, wide-band

distortions, controlled distortions, added colored noise, added white noise.

and banded distortions, were tested. Each of these included a minimum of six

* sets of distortions (most contained more) giving at least 144 data points for

correlation analysis. Listed below are the best set of parameters for each set -

of distortions.

Distortion 'Y P IdI

Waveform Coders (WFC) .4 2 .71 .

Pole Distortions (PD) 1. .2 .16

Coding (CODE) 0 3 .51

Wide-band (WBD) .2 1 .53

Controlled (CON) 0 2 .72,

Colored Noise (FN) 0 2 .93

]Banded (BD) 0 2 .72

Most of these fit the pattern of small y and P larger than 1. Pole

distortions were not matched well at all by any set of parameters. This can be

attributed to the small spread of the subjective composite acceptability

102
4 6 '%-



results in this set of distortions. This problem is discussed in detail in

Chapter 3. In general, however, results are fairly consistent across

"distortions. The high correlation of objective quality with composite

acceptability of added noise distortions, no doubt reflects the fact that

audibility of noise and perceived quality are closely related.

4.4.2 Power Function Spectral Distance Measures

Power function distance measures with frame distances of the form given in

equation 4.10 were computed with parameters listed in section 4.3.3. After

running correlation analyses, the following observations were made.

I. For y and P held fixed, correlation was always best for 8=0.2. with 8=0.3

yielding comparable but slightly worse results. In addition, as y

increased in value, performance monotonically decreased.

2. F'r P and 8 held fixed, performance was generally best for 8=0. Only when

P and 8 were far from their best values did y=1.0, give better correlation

than "y=O.0, and then only slightly better.

3. For 8 and -y held fixed, performance was generally superior for P=2.0,

although P=1.0 and P=3.0 were not much worse.

4. The best five combinations of parameters were:

Rank y 8 P Idl

- 1. 0.0 0.2 2.0 .721

2. 0.0 0.2 1.0 .719

3. 0.0 0.3 1.0 .714

4. 0.0 0.2 3.0 .712

5. 0.0 0.3 2.0 .695

When subsets of distortions were observed as described in the previous q

section, the best set of parameters in terms of correlation were:
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Distortion y P lI".

WFC 0.0 0.6 1.0 .77 -L

PD 0.0 0.6 3.0 60

CODE 0.0 0.2 2.0 .52

WBD 0.0 0.2 1.0 or 2.0 58 _•

CON 0.0 0.2 2.0 .74

FN 0.0 0.2 2.0 .92

BD 0.0 0.3 1.0 .71

Again, a consistent picture emerged in that -y should be 0.0 and P could be 1.0,

2.0, or 3.0 with little difference. Only waveform coders and pole distortions

led to a 8 different from 0.2 or 0.3. As with log spectral measures, good a
prediction of colored noise distortion acceptability was possible. .

4.4.3 Articulation Index

Measures of the form in equation 4.12 were tested with the parameters as q

described in section 4.3.2. When weighted by the vectcr in Table 4.2, the

following results were noted. I

1. Very little variation in performance existed for the entire set of

parameters, with best c~,)rrelation coefficients of .67 and worst .58..

2. For y held fixed, the best value for P was either 0.2 or 0.5.

3. For P fixed, the best values of y tended to be small, although, not always

zero.

4. The top 5 systems were:

1

"S•
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ARank 'Y P 1II

1. 0.0 0.5 .67

2. 0.2 0.2 .67

3. 0.4 0.2 .6.-

4. 0.0 0.2 .67

5. 0.2 0.5 .67

The unweighted measures were also tested in an identical manner with the

same values for the parameters. Results which were very similar to the

previous tests were achieved.

1. The top 5 systems were:

Rank P Ipl

1. 0.2 0.2 .67

2. 0.4 0.2 .67

3. 0.0 0.2 .67

4. 0.0 0.5 .67

5. 0.6 0.2 .67

2. For P held fixed, better results where generally achieved with y small.

3. For y held fixed, in all cases, correlation was a ir 1,-.rvtonically decreasing

function of P.

4. The spread was much larger than in the weighted case. '-

For the original articulation index characterization, the parameters y=.O

and P=I should have been used. These led to scores of .65 and .64 for the

weighted and unweighted cases, respectively. These values were not far from

the maxima achieved. In the regular log spectral distance measure, y=O and P=t

* .led to a correlation of .70.
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I
Distortion subsets were also tested on the unweighted measure with the

following results:

Distortion y P I7-

WFC 0 0.2 .70

PD 1 0.2 .30

CODE 0 0.5 .63 .

W9D ALL IDENTICAL .40

CON 0 0.2 .54

FN 0 0.2 .90

BD 0 0.5 .68

For all but the pole distortions (which as mentioned earlier, gave little

spread in subjective quality) small values of -y were best. The prevalence of

values of P less than 1 appears throughout. For the additive colored noise

distortion, as expected, good correlation was achieved.
I

4.4.4 Forward Masking Models

Log spectral distance measured were also formulated to use frequency

dependent levels, where the levels were computed as in equation 4.1.3 with

decay rates described in section 4.3.3. In all cases, for P held fixed,

maximum correlation was achieved for a time constant of 0 for all channels, or

no additional forward masking. The same result was observed for all the

distortion subsets. The best results for the various time constants are listed

be low.

Time Constant IpI I

0 ms .717
6 .708

14 .694
95 .675

195 .627
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.4.4.5 Klatt-Type Measures

Correlation tests were run on the Klatt-type measures as described in

section 4.3.2. The following points were noted: r

1. For all combinations of parameters C1 and C2 , using P=1 gave superior

correlation to using P=2. In most cases P=0.5 outperformed P=2, and in a

few instances outperformed P=I.

2. For P fixed at 0.5, 1 and 2 rankings were as follows:

Rank C1  C2  P I)l

1. 10. 0.5 2 .694

2. 10. 1.0 2 .693

3. 20. 0.5 2 .691

4. 10. 2.0 2 .691

5. 30. 0.5 2 .690

6. 20 1.0 2 .689

R 1 c2 P IPC

140. lOO ,. .736

2. 40. 1000. 1. .736

3. 40. 10. 1. .735

4. 50. 10. 1. .735

5. 50. 1oo 1. .735

Rank C C2  P tPI
1. 1000. 1000. 0.5 .735

2. 100. 1000. 0.5 .734

3. 60. 1000. 0.5 .733

4. 50. 1000. 0.5 .733

5. 40. 1000. 0.5 .733
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For P=0.5 or 1.0, many other combinations resulted in correlations of

roughly 0.73.

The interpretation for the meaning of C is that as it increases, the

difference between the largest frequency band intensity and the intensity of

the frequency band examined becomes less important. Similarly, as C2

increases, the difference between the intensity of the examined band and that

of the closest local maximum becomes less important. Note from equation

4.3.3.4 that since all intensities are in decibels, and differences are
I

actually ratios, the measure is normalized for overall gain. Therefore, no

terms similar to the energy weighting terms which were used in the previouslv

described measures were used in this measure. The difference terms in equation

4.3.3.4 vary between 0 and 60, with the bulk confined to the 0 to 40 range.

The different values of P led to different choices for C and C In his

2'

initial experiments, for phonetic distance, Klatt essentially used only P=2.
I4

He found optimum values of CI and C2 to be 20 and 1 respectively. As is -. %.

evident from the table above, near maximum correlation for P=2 was achieved

with just such a combination. For P=1, and C fixed, C tended to be larger, -S1 2

although a wide range was spanned. For P=1 and C fixed, C tended to give
2'.

best results when it was roughly equal to 40. When P was 0.5, maximum

correlation was achieved for C =1000, and C large. We find it interesting

that when P was 0.5, the best weighting was none at all, for P=1, the weighting

was moderate, and for P=2, the best weighting was substantial. The most

asthetically pleasing of these is the P=0.5, 1=000 C2 =1000 case, which was

one of the best combinations tested. Here we see distance as a combination of

square roots of differences between spectral slopes with no weighting.

Differences in slopes are the same as differences between the tangents of the I

corresponding angles. Since the inverse tangent function has much the siem
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shape as the square root function, it may be that an important factor is angle,

or something similar.

As with the other measures, various subsets of distortions were explored.

The parameters giving best correlation for some of them are listed below:

Distortion C 1  C2  P IpI

WFC 1000. 100. 2 .79 •.

CODE 1000. 1000. 1 .53

WBD 1000. 0.5 0.5 .61

CON 100. 1000. 0.5 .73

FN 1000. 1000. 2 .90

BD 40. 1000. 1 .77

We observe good correlation for additive noise and waveform coder distortions.

Other types of distortions were not modeled as well with a notable deficiency

in coding distortions.

4.4.6 Trained Measures

Measures as described in section 4.3.4 were analyzed for optimum values

for W. Table 4.4.6-1 lists the values achieved for the 25 and 5 band cases
m

for log-spectral distance. Given optimum weightings, we observe substantially

better performance for the 25 band case. Also, comparing optimum weighted

performanec with unweighted for the 25 band case, we see improvement in log-

spectral measures from Ip1=.72 to .78. With power-law measures, the

improvement is only from .72 to .74. The five-band weighted log-spectral

measure gives results close to the 25 band optimum whereas the five-band

weighted power-law measure is markedly inferior.

We see no clear interpretation for the meaning of the weights in Table

4.4,6-1. The large number of zeros in the table indicates the high degree of q
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Band Log Spectral Power Law
Distancre Weights Distance Weights

1 -80.8 -8.4
2 106.2 7.0
3 0.0 00
4 0.0 19.2
5 103.1 -19.3
6 -140.5 0.0
7 0.0 -6.4

0 8 0.0 0.0
9 0.0 0.0

10 -32.9 2.3
11 0.0 -8.3
12 0.0 0.0
13 0.0 5.8
14 0.0 0.0
15 -27.6 -10.2
16 0.0 -2.9
17 -48.4 0.0
18 0.0 -13.3
19 0.0 33.5
20 15.5 -41.6
21 0.0 -13.5
22 -76.4 0.0
23 0.0 -17.2
24 0.0 0.0
25 25.3 12.5

Combined
Band

1 9.7 .47
2 -16.3 -1.75
3 -4.8 -1.31
4 -10.7 -1.71
5 -9.1 -1.65

Table 4-4.6-1 Trained Weights for the Trained Measures
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redundancy in many of the channels for the distortion set in our data-base.

In an attempt to see if the optimum weights were robust, we conducted a

few experiments. First, various subsets of distortions were evaluated forI•

correlation of objective and subjective data. The results are listed below:

Distortion 101

WFC .81

CODE .60

WI3D .69

CON .83

FN .94

BD .70

In almost all cases, correlations were superior to those reported in

section 4.4.1. This shows that the weights give improvements pretty much

across the board, giving some hope of robustness.

Another simple experiment consisted of extending the duration over which

the measure was computed by roughly 40%. Objective and subjective quality were

then recorrelated with a resulting coefficient of .717. This number is almost

identical to that achieved with the unweighted log spectral distance over the

same interval. When weighted measures were calculated over the inLcrval not

used in training, the correlation coefficient was only .56. Also unweighted

log-spectral distances computed over the same inteival as the weighted measures

were trained on resulted in correlation of .75. The conclusion we draw from

these data is that the training of the weights gives an only minor improvement _

(e.g., .75 to .78) when testing occurs over the same intervals ised in

training. When we include additional speech outside of the3e intervals, the

trained measures lose their advantage. We feel, therefore, that the weighting
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coefficients computed in training have little or no meaning in themselves. r

"4.5 Discussion

The measure:n we tested were in many cases similar to those used is

previous work by Barnwell and Voiers [4.5]. The main property the auditory-

based measures had in common was the critical band based spectral analysis.

Various additional aspects will be examined. -

Tests similar to our log-spectral and power-law measures but using

uniformly spaced samples of LPC spectra were made on the same data-base by

Barnwell and Voiers. In both cases, optimum parameters closely matched those

observed by us. For example -y=0 in both sets of measures was best. Both

studies also found the best exponent for power-law spectral distances to be

0.2. With these values the same, however, critical band spectral analyses led

to correlations of .72 and .72 whereas, LPC spectral distances led to

correlations of .60. Clearly the non-uniform spacing of bands was preferable.

In the earlier study, non uniformly spaced LPC spectral samples were also

computed by lumping 32 uniformly spaced samples into 6. Both log spectral and -

power-law measures achieved maximum correlations of .68, which are comparable

to critical-band performance. Another factor which will be addressed shortly

involves the fact that the LPC spectral analysis had poorer time resolution

than the critical band analysis.

The articulation index approximation sought to measure short-time signal

to noise ratios using critical band spectra. A wider class of distortions

could be tested than with a time-domain short-time SNR, but at the expense of

precision. This is evident from a result obtained by Barnwell axnd Voiers in

which time domain short time SNR's had correlations of .78 with subjective

acceptability of waveform coders. The articulation index measure achicevd

correlation of only .70 with the same subset. However, a correlat on of .67

was possible for the set of all distortions where the Lime domain system could
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only be used on a few of them. The weighting function applied to the

traditional articulation index was shown in our context to give no more than

slight improvement over unity weighting, which demonstrates a possible

discrepancy between quality and intelligibility requirements.

The forward masking models tended to diminish the time resolution of the

spectral analysis. A time constant of zero amounted to the 10 ms time A

resolution of the critical band analysis. Considering the degradation that

occurred when this was extended to 16 ms (p=.717 went to p=.708), it may be

possible that the 10 ms frames were too wide. The frequency variant measures

of Barnwell mentioned above had a resolution of 15 ms. Comparing our critical

band analysis smoothed to 16 ms resolution correlation result of .708 to

Barnwell's .68, we see a close correspondence. In view of these facts, one may

question the importance of the precision with which we formulated the spectral

analysis, and argue that most any reasonable frequency variant spectral

analysis choice may be virtually equivalent. The filter bank approach appears

to have been worth a few percentage points in correlation, perhaps because of

the increased time resolution. This could possibly be compensated for by a

smaller IPC analysis windows, however.

The trained measures give an upper limit on what is possible for the

particular measures tested. Although the results are hard to interpret, they

4 allude to the fact that not all 25 filter bands are necessary. This result is

highly dependent on the distortion set we used, and enough degrees of freedom

existed with the weighting vector to encourage artifactual results. Again,

however, this procedure tends to indicate that precise critical band analysis

may be unnecessary for good results.

The Klatt-type measures performed best of all. Two factors may account

4 for its superior results over the log-spectral measures: 1) use of spectral .
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slopes rather than spectral magnitude. 2) the particular weighting function

used, Consider the log spectral distance with y=O, and the KlatI. measure with

C and C large. The measures are essentially identical except for spectral
1 2

slopes being used in the latter case as opposed to log spectra in '.he former.

For P=l, the log spectral measure gives correlation of .70 and the Klatt

measure gives .73. However, for P=1, the former gives pa.72 and for the latter

p=.67. Therefore, simply converting from log spectra to slopes does not always
lead to improvement. It should be noted, however, that given the same number

of free parameters, the best Klatt-type measures outperformed the best critical

band spectral distance measures. One of the best performing of the Klatt

measures used unity weighting, however (with P=.5). which supports the idea

that the slopes, rather than the weights, are important, Our conclusion will .

be that there is significant potential in this type of measure, and that it is

the combination of slopes and weights which makes it unique.

4.6 Conclusion

We feel that several statements can be made in summary.

1) Simple psychophysical models do not model subjective quality extremely

well. For example, the psychoacoustical growth of loudness exponent of 0.6,
i

when put Into the critical band model, performed much worse than an exponent of

0.2. Our belief is that degradations not modelable by simple distortions go

much beyond the auditory periphery In their perception, taud are inextricably

linked to more central neural processes. The emergence of an cxpuncnt of 0.2

in several instances is quite puzzling, and possible explanations are under

close scrutiny.

2) The precise Gaussian shaped critical-band filter bank characteristics

may be of little importance as long as a fair number of roughly logaritmunically

spaced channels are used.
I

3) Time resolution better than 10 mg may be desirable. One suggestion is
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that short windows allow differences in transient phenomena (e.g. bursts) to be I
measured.

4) Simple speech perception models, such as the Klatt type measures, may.--

be of greet value in the task of predicting subjective quality. Further

expansion of our work to other models, we feel, has great potential.
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CHAPTER 5-

PARAMETR IC OBJECTIVE MEASURES

5.1 Desirability of Estimating Subjective Parametric Quality

The purpose of any speech communications system is to permit users to

communicate easily and effectively via speech. A minimum criterion for

effective communication is that the speech communications link be able to

reproduce a highly intelligible version of the user's speech. However, speech

systems which reproduce merely intelligible speech usually do not perform well

with a casual speech style, and hence are not easy to use. Higher quality

speech reproduction permits a more natural speech style and promotes more

effective communication since important semantic cues for speech

communications, talker emotional state, or other talker qualities can be

transmitted. Users can be expected to judge a speech communications system

relative to their experiences in face-to-face conversation, and for each

individual there will be a level of degradation for which a speech

communication system will no longer be acceptable. If this minimum acceptable

level is extended into a continuum of levels of acceptability, then a bctter

criterion for easy and effective communication might be for the user to

subjectively rate the system in terms of how acceptably it reproduces the

user's speech.

The Diagnostic Acceptability Measure's Composite Acceptability scale is

exactly this kind of subjective quality assessment (see Chapter 2). It

provides valuable information for assessing quality and complexity tradeoffs in

spee-1cimmnunication systems. Unfortunately, bncause of the vague and all-

ciicomp-ssing nature of subjective ac~ceptability, the Diagnostic Acceptability

Measure, or DAM, compositc acceptability measure is difficult to track using

objective measures. The quality of acceptability does not give any clues as to
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the appropriate functional form for a corresponding objective measure.

There is, however, more than one quality assessment in the Diagnostic

Acceptability Measure, and most of these are considerably more specific in

scope then Lhe composite acceptability scale. Table 5.1.1 lists the entire set

of quality assessments which are provided by the DAM. Whereas the composite

acceptability scale does not suggest a corresponding objective measure, many of

the parametric subjective quality scales do. Therefore it is reasonable to

expect that objective measures can be designed which will track these more

specific parametric subjective qualities successfully. Once these specific

objective measures are designed, they can be combined in a linear or nonlinear

functional form and, using regression analysis, a measure for composite

acceptability can be developed. Such objective measures would also have the

advantage of providing additional diagnostic information about the nature of

the perceived distortion which would not be available from an estimate of

Composite Acceptability alone.

5.Z Theory

5.2.1 Multiple Linear Regression Analysis

A potentially effective procedure for combining a number of individual

estimates of parawetric qualities into a single estimate of Composite

Acceptability is to use a multiple linear regression model. In such a model,

the linear relationship between subjective and objective is hypothesized as:

K

Y I + xij + 4E 5.2.1-1

where y, the dependent variable, is the isometric or parametric subjective

quality and the x 's, the independent variables, are the objective measurc

variables [5.1]. The I%'s arc model parameters to be estimated and e, is the
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DIAGNOSTIC ACCEPTABILITY MEASURE
PARAMETRIC SIGNAL QUALITIES:

INDEX MNEMDN IC DESCRIPTORS EXEMPLARS

SIGNAL QUALITY

1 SF fluttering bubbling AM speech
2 S1- distant, thin highpassed speech
3 SD rasping, crackling peak clipped speech
4 SL muffled, smothered lowpassed speech .--

5 SI irregular, interrupted interrupted speech
6 SN nasal, whining bandpassed speech
7 TSQ total signal quality

BACKGROUND QUALITY

a BN hissing, rushing Gaussian noise
9 BB buzzing, humming 60 Hz hum
10 BF chiiping, bubbling
11 BR rumbling, thumping low freq. noise
12 TI3Q total background quality

TOTAL QUALITY

13 I1 raw or isometric intelligibility
14 IP raw or isometri- pleasantness
15 IA raw or isometric acceptability
16 I parametric intelligibility
17 P parametric pleasantness
18 A parametric acceptability
19 CA composite acceptability

Table 5.1-1 A list of the subjective speech quality scales in the Diagnostic
Acceptability Measure.
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error in the model for each observation. Subscript j is the index of the

independent, or objective measure, variable and subscript i is the index of the

observation, or the speaker and distortion system in the data base. Since

observations in the distorted speech data base entail both a speaker and a 1

distortion system, the observation index will more frequently indicate this

explicitly as y(sd), where s indicates the speaker and d indicates the

distortion system. The f. are estimated in the classical manner by minimizing

the mean square error, ei., over all distortion systems in the data base. The

resulting model, which is the desired objective measure, is:

K

Y p + xi 5.2.1-2
j=

777110

In order for this model to be valid, the following assumptions must be

satisfied:

1. The model errors e. are uncorrelated.

2. The error e has zero mean.

3. The error e has constant variance cr2.

4. The relationship between y. and x. is. in fact, approximately
linear. 1. -

To assess the validity of these assumptions, we must investigate the source of

the error term. The underlying force which determines the quality responses in

the subjective data base is the types of distortions in the distorted speech

data base. Therefore the distorted sentences are, fundamentally, the

independent variables in that they are specified exactly. The xi's, which are

the objective measure variables, can be thought of as complex transformations
.A

of the distorted speech waveforms. Once the transformation is fixed, the x "s

are exactly specified. Therefore the error term, e, should be interpreted as
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error in the subjective assessment of the quality of the distorted speech

samples. With this established, the above assumptions can now be evaluated.

First, the errors must be uncorrelated. In any subjective test this is

insured by randomizing the order in which the data is presented for evaluation.

This prevents any evaluation bias based on previous subjective judgments of

similar speech segments from occurring. Dynastat Corporation used such a

randomized order in the presentation of the DAM materials, so this assumption

should be valid.

Second. the error must have zero mean, and third, the error must have

constant variance. These two assumptions need to be examined together. The

subjective assessments of speech quality in the subjective data base are all

mean opinion scores, that is, they are based on the judgments of several

individuals. Before individual opinions are averaged together, they are

adjusted to eliminate the effects of that individual's preference biases (see

Chapter 2). This means that each individual's assessment error is transformed

to have zero mean and constant variance relative to the other listeners in the

test. Furthermore, new listeners undergo a training period prior to the actual

test, and can only proceed if they show a relatively small and constant quality

judgment error relative to the other listeners, across a variety of distorted

speech samples. Therefore, because individual judgments are adjusted to

conform to a group norm and because listeners are carefully trained, "

assumptions two and three should be valid.

Fourth, the relationship between dependent and independent variables

should be approximately linear. If this is not true, then the assumption of

con3tant error variance will most likely be violated. In practice, one assumes

that the relationship is linear, does the regression analysis, and then checks

to see that the error variance is constant. This check is most easily done by
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looking at a plot of error, or residual, for each observation versus the

predicted value for each observation. If the model does exhibit non-constant

variance, then a transformation of some or all of the x. s may mitigate this

problem. Using transformations, the relationship between independent and ...

dependent variables can be linearized. If the residuals indicate that higher

order terms in x. are needed, these terms can be thought of as adding an

additional independent variable which is simply a transformation of one of the

*. original x.'s. In this way a polynomial model can be built within the framework

of the original regression model.

5.2.2 Monotonic Regression Analysis

Monotonic regression is similar to simple linear regression in that the

objective is to pass a curve through a set of points such that an objective

function is minimized. In the case of monotonic regression, however, the curve

need not have a parameterized functional form, such as y = ax + b, but rather

must simply be a monotonically increasing or decreasing curve. This is a case

of regression under order restrictions, and is thoroughly covered by R.E.

Barlow [5.2]. In both types of regression there are three principal variables:

the independent variable x.., the dependent variable yi' and the estimated

dependent variable y.e, where the subscript i is the observation index. Again,

in both cases the objective function to minimize is the sum of the squared

error over all observations, where the error is E.i (yi yi). Hc.,ever, in

monotonic regression the only restriction on y, bcsides minimization of

squared error, is monotonicity, such that yi < Yi * if x. < x. . The
. ,+, 1+1

inequality relating the yies is 'less than' for monotonically increasing

regression and is 'greater than' for monotonically decreasing regression.

Figure 5.2.2-1(a) shows a monotonically increasing regression curve fit and

Figure 5.5.2-1(b) shows a monotonically decreasing curve fit. In these Figures

xi is the frequency index of a power spectrum, y.. The independent variable x.

122

4!

S /i .: ! ""



SAM. a .

I.M1 -e4MM

.8m.

IAM

R-MIN a.mos

*.4 ft v S of a aA

-am4

a saft a ~ a . 0 -on .1" ow 815

H5U Ian parta~ (b. show a~a moooil aerasn curvn. In both

pat the -xi is th vau of ax ). Ontey-xsth au

* 123



is therefore a simple scaling of the observation index i.

The 'Up-and-Down Blocks' algorithm, developed by J.B. Kruskal [in 5.2]

is an efficient method of computing a monotonic regression. Understanding the

algorithm first requires defining several terms. In the following discussion

assume that the dependent vaw iable, xi, is arranged ;n ascending order such

that x. < x. for all i from I to N-i and that there are N elements in the
1+1

dependent variable data set.

BLOCK - a set of consecutive elements y. through jk' J < k. The value of a

block is equal to the average of the elements in that block.

UP-SATISFIED and DOWN-SATISFIED - consider three consecutive blocks, B-, B,.

and B+. For monotonically increasing regression block B is said to be up-

satisfied if the average of the elements of B is less than the average of the

elements in B+. For monotonicly increasing regression block B is said to be

down-satisfied if the average of the elements of B is greater than the average

of the elements in B-. For monotonicly decreasing regression the previous two

inequalities are reversed. Additionally, any block containing YN' is

automatically up-satisfied and any block containing y1  is similarly down-

satisf ied.
I

A flowchart of the algorithm for performing monotonic regression is

shown in Figure 5.2.2-2. The algorithm begins with the independent variable

data set partitioned into N blocks of one element per block. At each stage in

the algorithm one block is designated as 'active'. Three choices are available

for an active block. If the active block is not up-satisfied then it is

combined with the next higher block. If the active block not down-satisfied
I

then it is combined with the next lower block. If the active block is up-

satisfied aria down-satisfied then the next higher block becomes active. At the

start the first block is active and the algorithm is terminated when the

highest active block is up-satisfied. The values of the blocks at termination
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Figure 5.2.2-2 The 'Up-and-Down Blocks' algorithm. The abbreviations shown in
the algorithm are described as follows:*ABR - active block. At the start the block containing y] is the active block. .'."

The algorithm terminates if the active block contains yNI -4
US - up satisfied. The conditional tests if the active block is up

satisfied.
DS - down satisfied. The conditional tests if thei active block is downsatisfied.
PD - pool down. The current block is merged with the next lower block. This

new block becomes the active block.
PU - pool up. The current block is merged with the next higher block. This

new block becomes the active block.

NH - next higher. The active block is now the next higher block.
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are the desired y. and are the best monot~onically increasing f it to the data

Yi subject to minimizing the sum of the squared error. If. at. termination, a

K'block contains more that one eleument, for example y~ through y k then each

*corresponding estimate of the dependent variable, y. through k*is equal to
jk*

the value of the block containing yj through yk

For the work done in this study the most significant result of monotonic

*regression is the statistic 'stress', which is the error variance divided by

* ~the dependent. variable variance. This can be expressed as:

N

Stress ---- ---- ---
N

) ~26
A.(y1 -

The stress of a monotonically increasing regression provides a measure

* of how closely a set of yi s conform to a monotonically increasing function.

* ~If the set. is perfectly monotonic increasing then the resultant stress is zero,

and if the set. is perfectly monotonic decreasing then the resultant stress is

one.

An extension of monotonic regression is uni-modal regression. This

*regression technique fits a uni-isodal curve to the data set under the

constraint. that the sum of the squared error is minimized. This analysis can be A

broken down into three steps. In the first stcp the mode of y. is found.

Assume that the observation index of the mode is M. If the mode of y. is to be

a global maximum, then the second step is to do a monotonically increasing

regression on the points y1  through yM and the third step is to do a

*monotonically decreasing regression on the points y M1through y N If the mode

of y * is to be a global minimum, then the second step is to do a monotonically
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decreasing regression on the points y1 through yM and the third step is to do a

monotonically increasing regression on the points YM+ through YN" Stress is

s still expressed as in equation 5.2.2-1.

Finding the mode of yiO requires two monotonic regressions. As a side-

note, if all intermediate results in these regressions are saved, these

results being all block values for blocks I through the active block for each 4

algorithm step, then the regresaions required in steps two and three are

already done and all three steps can be combined into one procedure. lowever,

for the sake of clarity, the more straightforward three step approach will be , I

described here. If the mode of yi is a global maximum then a forward

monotonically increasing regression and a backward monotonicly increasing

regression are done. A forward regression is simply the regression performed

by the up-and-down blocks algorithm. In a backward regression, however, the

starting active block is YN and the active block progresses from yN to yl;

hence the name backward. This can be accomplished by reversing the indices on

the data sets x. and yi, using the up-and-down blocks algorithm and then re-

establishing the indices. In reversing the indices the following mapping is

performed: _

x,
i " 'N-i+lYi " Y YN-i÷I-.-

In re-establishing the indices the same mapping is used again with the

*provision that the index of yr* is also reversed. For both fc-ward and backward

regressions the intermediate stress at each step in the algorithm must be

computed. Intermediate stress values are computed using equation 5.2.2-1 with N

replaced by the index of the current active block. Figure 5.2.2-3 shows the

results of forward and backward regression on a data set. The curve labeled

'F' is the intermediate stress for the forward regression and the curve labeled

'0' is the intermediate stress for the backward regression. The curve labelcd
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Figure 3.2.2-3 Stress curves for a unimodal maximum monotonic regresuion. The

curve 'F' is the stress at each step for a foreward asceuding
* monotonic regression. The curve 'B' is the stress at each step

for a backward ascending monotonic regression. The curve 'S' is
the slum of curves F and B at each step. The mod. in the
regression is the index associated with the minimum of curve S.

128



'S' is the sum of the two curves 'F' and 'B'. The desired quantity, the index

of the mode of y is equal to the index of the global minimum in the curve

'S', since this is the mode for which the final stress is minimum. With the

"mode of y established, the forward and backward regressions of steps two and .

three are computed as previously described and a value of stress for the uni-

modal regression is be computed.

5.2.3 Multidimensional Scaling A-

In the context of this study, multidimensional scaling, or MDS, is a

tool used to graphically examine the relationship between several objective and

subjective speech quality measures. It maps similarity between quality

measures, as measured by correlation, into distances between quality measures

as measured in an N-dimensional space. Using this technique, the relationship

between many measures can be studied by examining a graph, as opposed to

scanning a large table of correlation values. The principles of

multidimensional scaling are best set forth by R.N. Shepard [5.3][5.4] and J.B.

Kruskal [s.s][s.8]. In order to discuss the theory of multidimensional

scaling, several terms need to first be defined:

OBJECT - the thing or event to be investigated. In this study objects are

subjective or objective speech quality measures. a

PIiJXIMITY - also referred to as similarity, this is a measure of the distance

between objects as quantified by the magnitude of a correlation coefficient or

some other distance measure.

DATA MATRIX - MDS operates on proximities associated with pairs of objects.

It is convenient, to think of proximities among N objects as entries in an N by

N data matrix, where the entry in row I column J, m 1 ,, is the proximity of -

object I to object J. If we assume that the measure of proximity is a metric,

then mU is equal to mi and the data matrix is symmetric. Furthermore if we
I)jii

assume that the proximity of an object to itself is constant for all objects,
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zero for example, then the data matrix contains only (N)(N-1)/2 unique entries.

For the applications in this study these assumptions are valid, so the data

matrix can effectively be reduced to a lower trianguJar matrix of (N)(N-I)/2

proximities.

REALIZATION SPACE - the output of a multidimensional scaling is a table of '

coordinates which locate each object in the realization space. The distance

metric in this space is Euclidean and the dimensionality of the space can be

varied by the user. The distance between objects in the realization space is a

function of the proximity associated with the two objects. The distance

between object i and object j in the realization space is denoted as d 'I j

The dimensionality of a the realization space Is an important issue. For N

objects it can be shown that the realization space spans at most N-i dimensions -

for metric scaling and N-2 dimensions for non-metric scaling (5.7]. If the data

is error free, then this dlmensionality may be appropriate, though with noisy .

data some dimeisions may be accounting for noise only. Lower dimension spaces 40

tend to smooth out data noise since, with fewer object coordinates to estimate

from the data, the coordinates have greater statistical reliability.

METRIC and NON-METRIC SCALING - scaling can be divided into these two broad

categories. Mapping proximities in the data matrix into distances in the

realization space in general requires a transformation on the proximities. If

the function which transforms proximities to distances in the realization space

is linear, then the scaling is metric. If the function is merely monotonic

then the scaling is non-metric. Transformed proximities can be thought of as

estimates of inter-object distances in the realization space. The transformcd

proximity associated with object I and object J is denoted as dlj.

STRESS - points are placed in the realization space such that they minimize

an error function, defined as follows: .
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N N 1/2

(d d

jai jai

STRESS - - - - - - - - - - - - 5.2.3-1
N N "

(di.j)i=l j=l 1

STRESS measures the differences between the distance between points in the

realization space and the estimated distance between pointi as specified by the

transformed proximities. In another sense it measures how well the dimension

of the realization space suits the data. The value of STRESS should guide the

experimenter in choosing the appropriate dimensionality for the realization

space. A rough interpretation of stress is as follows:
*I

O perfect
5% very good

10% good
20% fair

As an example of metric MDS, consider the data in Table 5.2.3-1 in which

proximities are actually distances, in miles, between ten cities in the United

States. WDS can be used with a linear transformation of the proximities

(actually a simple scaling) to construct a 'fiap' of the U.S. as in Figure

5.2.3-1. Since this data was measured from a very nearly two dimensional space

(the surface of United States land mass) the realization space need not be

larger than two dimensions. In this example the STRESS, or error of fit in the

realization space, would be small and nearly constant for realization space

dimensionality greater than one. Figure 5.2.3-1 illustrates another important 6

"aspect of MIDS; the Euclidean distance measure used in the realization space is

rotation and reflection invariant, which means that the resultant configuration

of points can have any angular orientation in the realization space. MDS q
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ATLANTA M6? IN 7?01 004 746 2193 2963 543

ICAGO ? 020 HO 1"4S 7 ?3 04 fiS? 57

DWW"A 082 e2o vs 0 ON1 172 6 H 1011 14"4

HO"1 70 040671 ISM4 9" Am "4 111 020

LM AMdM. 1936 1745 U34 074 n 32451 347 051 2300

mum 04 993 9736 IS30 33 M 250• 37342 U

K~W YM 746 713 1631 1420 2459 IM0 2571 2406 206*

SANFP.= 209ON) 95 04645 347 25"415 7 6762442

I.ATTU 2102 9737 1031 1691 959 234 240 673 23a0

0)U7MON 543 507 1494 120 M30023 20 24421523

Table 5.2.3-1 Airline distances between ten U.S. cities (8,.

0NEW YMR
WASMINGTON

Ac."

ATLANTA 0|
SiAMI

SEATTLE 0ENVVW

0 Los

0 *ANGELES

Figure 5.2.3-1 'Aap' of ten cities in the U.S. as produced by multidimensional
scaling of the data in table 5.2.3-1.
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produces a configuration of points, but it is up to the researcher to identify

the orientation and meaning of spacial dimensions in that configuration.

As an example of non-metric scaling, consider Figure 5.3.2-1(a). This

is a two-dimensional scaling of the similarity between parametric quality

measures in the DAM. In this scaling, parametric quality meaglurcs are the

objects, and hence are represented as points in the plot. Figure 5.3.2-1(b) is

a key for identification of these points. The similarity between two measures

is represented by the proximity of their points in the plot. The functional

measure of similarity between two measures is simply the magnitude of the

correlation coefficient relating these two measures across the ensemble of

distortion systems in the data base. This scaling is non-metric because the

transformation of m. to yield d is monotonic. That is, if you were to

construct ordered pairs: (mij, dij), and then rank the m.j's in descending
ii.

order, their corresponding d 's would also be ranked in descending order. This
ij

is the only restriction on the transformation.

5.3 Parametric Objective Measures

5.3.1 Regression Analysis

Regression analysis has been done on the subjective quality data base by

itself to determine to what extent the most desired subjective quality,

composite acceptability, can be estimated from some subset of the remaining

parametric subjective qualities. For two reasons only a subset of the

remaining parametric qualities are considered. First, some of the subjective

qualities are general in nature, rather than specific. These qualities are

total signal or background quality, and overall intelligibility, pleasantness

and acceptability The whole motivation for this phase of the study was to

focus on narrow rather than broad quality categories, with the assumption that

these would be easier to objectively estimate. Second, it is of interest, out

of efficiency and expediency, to investiga,.e how few of the parametric
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SYMBOL MNEMON IC QUALITY

SIGNAL QUALITY

A SF fluttering bubbling

B SH distant, thin

C SD rasping, crackling

D SL muffled, smothered -

E SI irregular In-erruptad

F SN nasal, whining

G TSQ total signal quality

BACMROUND QUALITY

H BN hissing, rushing

I BB buzzing, humming

J BF chirping, bubbling

K BR rumbling, thumping

L TBQ total background quality

TOTAl, QUALITY

M II raw or isometric intelligibility

N IP raw or isometric pleasantness VI

0 IA raw or isometric acceptability

P I parametric intelligibility

Q P parametric pleasantness

R A parametric acceptability

S CA composite acceptability .

Figure 5.3.2-1(b) Key to symbols in Figure 5.3.2-1(a).
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subjective qualities are needed to adequately estimate composite acceptability.

Fewer terms in the model for composite acceptability means fewer objective

measures to build for each term and hence less computation in the composite

acceptability objective measure.

The model for estimating composite acceptability from the parametric

subjective qualities is identical to equation 5.2.1-2, except for these re-
definition of terms: y. is the composite acceptability score for distortion

system i, x.. is a parametric subjective quality score for distortion system i.

In all cases the regression analysis was done over the entire 1056 distortion

systems.

It should be noted that this regression analysis is simply an extraction "

of the model originally used by Dynastat to compute composite acceptability

from the parametric subjective qualities. For this reason one should expect .

very good regression modeling results. This expectation was, in fact, realized

by the analysis. However, good modeling results were also achieved by using

only a subset of all the parametric subjective qualities to estimate composite

acceptability, which is new and very encouraging information.

Three regression studies were run on the subjective data base. The

first represents an upper limit on how well composite acceptability can be

estimated b 'ed on all of the available information and using only linear :1

regression models. Table 5.3.1-1(a) lists the parametric qualities used in - -

this analysis. Note that total signal, total background, and parametric

intelligibility, pleasantness and acceptability were not used because these are

in fact composite qualities based on the qualities which were included in the
0

model. The results of the analysis, listed in Table 5.3.1-1(b), is that 99.9%

of the variability of composite acceptability was explained by the included

variables (R-square = .9990). This is nearly perfect, indicating that the 'A

parametric subjective qualities included in the model together contain all the
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INDEX MNEMONIC DESCRIPTORS

SIGNAL QUALITY

1 SF fluttering bubbling

2 SH distant, thin

3 SD rasping, crackling

4 SL muffled, smothered

5 SI irregular, interrupted •.

8 SN nasal, whining

BACMlUND QUALITY

8 13N hissing, rushing

9 BB buzzing, htmming

11 BR rumbling. thumping

TOTAL QUALITY

13 II raw or isometric intelligibility

14 IP raw or isc.,ictric pleasantness

* 15 IA raw or isometric acceptability

aa
(a)

Multiple R .9995 Standard error of estimate .3153
Multiple R square .9990

Analysis of Variance

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F Ratio "•

Regression 102252. 13 7865. 79135.
Residual 103. 1042 .0994

(b)

Table 5.3.1-1 Part (b) shows the results of linear regression analysis with the
subjective qualities listed in part (a) as independent variables and composite S
acceptability as dependent variable.
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information present in the composite acceptability quality. As stated

previously, this is to be expected since this analysis merely extracts nearly
? .,

the same model used by Dynastat to compute composite acceptability.

The second analysis was limited to using only the signal and background ---

qualities as independent variables of the regression model used to estimate

composite acceptability. However this analysis was slightly different in that

forward stepwise regression was used as a means of identifying the most

important of these parametric qualities. As the name implies. stepwise

regression is a stepwise or iterative technique used for independent variable

selection. In the first step the variable which explains the most variation in

the dependent variable is included in the model and all model statistics are

computed. In all subsequent steps, the variable which, when added to the
Y!

current model, helps explain the most variation in the dependent variable, is

included in the model and all model statistics are computed. In this way, a

useful, though sub-optimal, ranking of the independent variables is obtained by

the degree to which the variables coi-tribute to the model. In addition, at .

every step a regression model for the included independent variables is

- obtained.

4
Table 5.3.1-3 shows the results of this analysis. Listed are the

parametric qualities in the order in which they entered the model, the

multiple-R. or correlation coefficient, the multiple-R squared, or fraction of

variability explained, and the increase in multiple-R square. The results show

that two qualities dominate the rest in terms of contribution to the model.

These are SD. which by itself accounts for 43 percent of the variation of CA,

and SL which, along with SD, accounts for 66 percent of the variation of CA.

These results are not too surprising, in that the histograms (Figures 5.4.2-1

and 5.4.2-1) for these two qualities show a much larger variance than any of

the other parametric subjective qualities. Since SD and SL themselves have a
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Step Entered MultipleR2 Increase
No. R in R

1 SD, rasping, crackling .6541 .4278 .4278

2 SL, muffled, smothered .8120 .6594 .2316 -

3 SF, fluttering, bubbling .8648 .7478 .0885

4 BN, hissing, rushing .9039 .8171 .0692

5 P2 chirping, bubbling .9175 .8418 .0248

6 SI, irregular, interrupted .9380 .8798 .0380

7 SH, distant, thin .9494 .9014 .0216

8 BB, buzzing, humming .9518 .9059 .0045

9 BR, rumbling, thumping .9524 .9070 .0011

Table 5.3.1-2 Results of stepwise regression. Subjective qualities are listed
in the order in which they entered the model. At each step, the columns of .
numbers show the multiple R, multiple R-squared and increase in multiple R-
squared, respectively.

"1.9
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large variance, they help to explain a larger portion of the variance in

composite acceptability. Another encouraging result is that only seven

parametric qualities are needed, SD through SH, to raise the correlation

coefficient for the model above .90. Therefore only seven of the thirteen .

subjective qualities included in the previous regression study are needed to

explain 95 percent of the variation in composite acceptability, and the

remaining five subjective qualities explain less than 5 percent of the -

variation of composite acceptability. This analysis suggests that objective

measures for only seven of the parametric subjective qualities need to be

designed, since the remaining subjective qualities contribute little to the

estimation of composite acceptability.

The third regression analysis was all possible subsets analysis, done to

better support the conclusions reached by the stepwise regression analysis. I

Stepwise regression is, in general, a sub-optimal method for independent

variable selection. In a given step only those variables not yet included are

A
examined, without regard for the appropriateness of the variables already

included, In contrast, all possible subsets is an optimal method of variable

setection since it examines all the independent variables at each step and

chooses that subset of n variables (n being the step number) which best

explains the variation in the dependent variable. Therefore this analysis

method will find the set of parametric subjective qualities that will yield the

best estimate of composite acceptability, under the restriction that the set

contain only n members.

The results of this analysis are listed in Table 5.3.1-3. For each
*0

subset of size n, the table lists the corresponding multiple R squared,

multiple R and also indicates the parametric qualities included in that subset.

In this method of analysis, a specific ordering of importance of parametric

qualities is more difficult than with stepwise regression. Since the rcgrcssion -71
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Parametric Quality Number in Subset

12 3 4 5 6 7 8 9 10

I SD rasping, crackling XXXXXXXXXX
2 SL, muffled, smothered XX X XX X X X X
4 BN, hissing, rushing XX X X X X X
6 SI, irregular, interrupted X X X X X X
5 BF. chirping, bubbling X X X X X X
7 SH, distant, thin x x X X X
3 SF, fluttering, bubbling X X X X X X
8 BB, buzzing, humming XX X
9 BR. rumbling, thumping X X
10 SN. nasal, whining X

Number in Subset Multiple

I R R

1 0.427 0.653
2 0.859 0.812
3 0.747 0.864
4 0.818 0.903
5 0.866 0.931
6 0.885 0.941
7 0.901 0.949
9 0.905 0.951
9 0.906 0.952

10 0.906 0,952

Table 5.3.1-3 Results of all possible subsets regression analysis with the ten
signal and background parametric qualities as dependent variables and composite
acceptability as the independent variable. The columns of X's indicates the
qualities included in the regression model for a given number of dependent
variables (as indicated by the row of numbers above). For comparison, the
column of numbers on the left Is the order in which the parametric qualities
ertered the regression model in stepwise regression analysis. Below are listed
the multiple R and multiple r squared for each subset of size n.
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model is totally re-evaluated for each subset size, there is no one order of

variable entry. The table lists parametric qualities in approximate order of

entry under all possible subsets regression, and also indicates, by the numbers

in the leftmost column, the order in which the qualities entered under stepwise

regression. The most notable difference between the two types of analysis

* concerns the quality SF. Under stepwise regression this variable entered in

step three, where under all possible subsets SF entered in subset three,

dropped out in subset five and re-entered in subset seven. Therefore stepwise

analysis overemphasizes the importance of SF. However, for the remaining

parametric qualities the two analysis methods yield quite similar results.

Two conclusions can be drawn from the results of regression analysis on

the subjective data base. First, that parametric subjective qualities can be

used to construct a model which provides excellent estimates of subjective

composite acceptability. And second, that some subset of these parametric

qualities can be used to construct a model which provides estimates of

composite acceptability which are nearly as good as estimates made by the full

model. Given these conclusions, it is then highly desirable to construct

Gbjective measures which provide good estimates of the parametric subjective

qualities, since these objective measures, combined into one large model, can

be expected to provide improved estimates of subjective composite

acceptability.

5.3.2 Multidimensional Scaling Analysis

Multidimensional scaling was done on the subjective data base to qualify

the perceptual relationship between the parametric subjective qualities and the

overall subjective qualities, and in particular composite acceptability.

Figure 5.3.2-1(a) shows the results of a multidimensional scaling analysis done

on the subjective data base. All nineteen subjective qualities were Includud

* in the scaling, and Figure 5.3.2-1(b) lists the key for identifying the
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subjective qualities in the plot. For this analysis, the similarity between .

subjective qualities was equal to the magnitude of the correlation coefficient

between the two qualities as computed over all the distortion systems in the

data base. A descending monotonic regression was done on the similarities, so P
-.1

that a similarity nearly equal to 1.0 mapped into a distance nearly equal to

zero. Because the transformation from similarity to distance was monotonic,

the scaling was non-metric. I

The analysis was done for several realization space dimensions. Figure

5.3.2-2 shows the decrease in configuration stress for increasing

dimensionality. This curve does not have a distinct 'knee', where the best

tradeoff between stress and dimensionality would occur, but a realization space

of dimension four does yield a stress of 6 percent, which indicates a good fit.

The plot in Figure 5.3.2-1(a) is for a realization space of only two

dimensions, with a stress of 16.9 percent. This is rather high, indicating

only a fair correspondence between the plot and the actual correlations betwccn

subjenLive qualities. Even so, the plot is easy to comprehend and the axes of -

the plot are amenable to perceptual interpretation. These two facts argue for

using a two rather than four dimensional realization space, despite its high

stress value. e.
The plot shows composite acceptability near the center of the space. The

other high level qualities, intelligibility, pleasantness, and acceptability,

are centered closely around composite acceptability indicating that qualities

in the center of the realization space are general in nature. The loft side of

the realization space contains most of the signal qualities while the right

side contains the background qualities, suggesting that the horizontal axis

measures a sigial versus background quality degradation dichotomy. Similarly,

the bottom of the plot contains qualities whose exemplars are mostly fluttering

or interrupted, while the top of the plot has qualities which exemplify
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primarily noisy distortions. Therefore the vertical axis seems to measure a

noisy versus fluttering quality degradation. Finally, total signal quality and

total background quality are both nearly centered within their respective

signal or background parametric qualities.

One can conclude from this multidimensional scaling that the parametric

qualities in the subjective data base do, in fact, measure different subjective

qualities since all the parametric qualities are widely spaced in the ,

realization space. Parametric qualities closely spaced in the realization space A

would indicate a large degree of redundant information. Another point is that,

in two dimensions, we can associate perceptual qualities with the axes of the

realization space. And finally, we note that composite acceptability is nearly

in the center of the realization space, which agrees with the fact that it is

an overall quality measure, and does not measure only i specific perceived e

quality as do those measures located near the edges of the realization space.

5.4 Parametric Objective Measures

This section of the report discusses specific objective measures which .

have been used to estimate parametric subjective quality. The approach used in

designing an objective measure was to first understand the subjective quality

it must estimate. The subjective scores provide a key to this understanding.

Distortions which register a subjective quality score widely deviating from the

average are exemplary of that quality, and hence provide insight into the

physical or objective nature of that subjective measure. This approach to

understanding the meaning of subjective quality scales will be discussed in .

detail for each of the parametric qualities identified as most important by the

regression analysis in section 5.3.1. Before proceeding, however, the meaning

of the term 'distortion' should be clarified. In the distorted speech data

base, each distortion is comprised of four talkers witn six distortion levels

for each talker (Chapter 2). In the following analysis these 24 distortion
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systems are grouped together and are referred to simply as a distortion.

5.4.1 SD: Rasping. Crackling

This subjective quality describes the degree to which speech is rasping

or crackling. Table 5.4.1-1 lists the distortions which excite the system

distorted scale. For each distortion the minimum, maximum and range of quality

scores associated with that distortion are listed. The degree to which a

distortion exemplifies a parametric quality is related to either the range, or

spread, of the distortion on the parametric quality scale or to the maximum

quality score on that scale. The latter case occurs when a distortion does not

have a large range, but instead scores uniformly low on the subjective quality

scale, and therefore indicatives that the entire distortion exemplifies that

quality. The list in Table 5.4.1-1 is ordered according to the range of the

distortion quality scores so that, in general, the distortions most exhibiting

the subjective quality fall at the top of the list.

The dominant physical or objective characteristics the distortions in

Table 5.4.1-1 have in common is that they involve nonlinearities which distort

the waveform and therefore smear energy across the spectrum. This smearing is

particularly noticeable at higher frequencies where the speech level is

naturally lower and more easily dominated by noise from nonlinearities. Also

present are additive noise distortions, which bolster the hypothesis that

noise, either correlated to the speech power and arising from nonlinearities or

uncorrelated and arising from an additive process, is the objective character

of this subjective quality.

As mentioned in section 5.3.1, system distorted accounts for a very

large fraction of the variance of composite acceptability, some 60%. This is

principally because of the large number of distortions which excite the system

distorted scale. The histogram in Figure 5.4.1.1 gives another perspective on
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SD rasping, crackling

DISTORTION MAX MIN RANGE

center clipping 83.90 50.70 33.20 .

CVSD 85.40 53.40 32.00

ADI 85.40 57.70 27.70

peak clipping 81.50 55.70 25.80

quantization 71.90 47.80 24.10

400 - 800 Hz noise 83.40 61.80 21.80

1900 - 2600 Hz noise 85.10 65.00 20.10

1300 - 1900 Hz noise 86.80 68.60 18.20

1 BD 400 - 800 79.70 61.70 18.00

800 - 1300 Hz noise 85.80 68.90 16.90

APCM 77.70 60.90 16.80

*BD 2600 - 3400 83.30 68.10 15.20

2600 - 3400 Hz noisr 84.40 69.40 15.00

LPC 83.00 69.50 13.50

bro&dband additive noise 85.10 73.90 11.20

ECHO 87.60 76.40 11.20

0 - 400 Hz noise 38.20 75.10 11.10

lowpass filtering 85.10 74.10 11.00

BD 100 - 400 91.60 80.80 10.80

VEV 7 78.90 66.20 10.70

ADPCH 78.50 67.90 10.60

PD 1900 - 2800, radial 87.20 76.30 10.40

BD 100 - 3500 73.40 63.50 9.90

Table 5.4.1-1 Distortions which most prominently excite subjective quality
SD, listed in order of decreasing significance.
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this issue. The horizontal axis is the SD subjective quality score. A

subjective quality of 85 is very good, or nearly complete absence of the

quality SD, while a 20 is very poor, or highly distorted. The vertical axis is

the frequency of occurrence of a given value of the SD quality score when taken

over all speakers and all distortion systems in the data base. A case by case

examination of the data in this histogram would show that points which fall in

the left tail of the distribution are members of the distortions listed in

Table 5.4.1-1.

Research efforts up to this point have been unable to identify a

good measure for this subjective speech quality. Efforts to measure the

energy of the noise resulting from the nonlinear speech distortions have

been largely unsuccessful because the noise energy is dominated by the

speech energy. Because of this, calculating the noise power in a

straightforward manner, such as by taking the difference between the power

spectrums of the distorted and the original speech, is extremely prone to

error.

Experiments thus far, however, indicate that a good measure for

estimating SD might be some function of the difference between the

level of the noise floor and the level of the excitation spectrum in a

voiced segment of the distorted speech spectrum. The spectrum of an

undistorted voiced speech frame is characterized by an impulsive spectrum

due to the voiced excitation with a slowly varying envelope due to vocal

tract filtering. The quantity to be measured, which could be called

correlated SNR, is the difference between the level of a pitch peak and its

adjacent valley, where both levels are measured on a log scale. The

motivation for measuring this quantity is that speech which is distorted by

a nonlinearity will have a slightly smeared spectrum and hence will have the

difference between these two levels diminished. An objective measure for
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estimating SD could be based on the correlated SNR of the distorted

speech, summed over all speech frames, normalized by the correlated SNR of

the original speech, also slimmed over all speech frames. ,

5.4.2 SL: Muffled, Smothered

This subjective quality describes the extent to which speech is muffled

or smothered. Table 5.4.2-1 lists the distortions which excite this subjective

scale. Most prominent of these is the low pass distortion which, since it

eliminates high frequencies, fits well with the subjective quality of muffled.

The low band bandpass distortions also produce a similar muffled quality. The

other distortions fit better with the subjective quality of smothered. The

highpass and the high bands of the bandpass bandlimiting distortions eliminate

or diminish speech energy in the middle of the zero to 3600 Hz speech band

Swhich, produces the perceptual effect of smothered. The two waveform coders,

CVSD and ADM also diminish the mid-band energy of the coded speech with respect

to the original speech and hence produce the same smothered effect. The

remaining two distortions listed in Table 5.4.2-1 are narrow band additive

noise, both injecting noise in the low to middle part of the speech spectrum.

These distortions can be thought of as smothered in that they produces a noise

masking of the speech.

Like the subjective quality SD, SL has a relatively diverse mix of

distortions which excite it. There are, however, far fewer types of

distortions which produce severe SL quality degradations. This can be seen

from the relatively small number of entries in Table 5.4.2-1 and from Figure

5.4.2-1. This Figure shows the frequency of occurrence of a specific level of _

the quality SL across the ensemble of all distortions. It is strikingly

different from the corresponding Figure for SD in that the main lobe for

quality SL is narrower and its left tail is longer and lower. This indicates
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SL muffled, smothered

DISTORTION MAX MIN RANGE

lowpass filtering 83.20 46.30 36.90

CVSD 87.50 62.40 25.10

bandpass filtering 77.60 53.40 24.20

ADM 87.10 68.30 18.80 ".-.

center clipping 84.10 66.70 17.40

highpass filtering 79.20 62.40 16.80

400 - 800 Hz noise 85.50 69.20 16.30

800 - 1300 Hz noise 86.20 73.00 13.20

Table 5.4.2-1 Distortions which most prominently excite subjective quality
SL listed in order of decreasing significance.

Multiple R .7342 Standard error of estimate 3.5679
Multiple R square .5391

Analysis of Variance

Source of Sum of Degrees of Mean I
Variation Squares Freedom Square F Ratio

Regression 15142. 14 1081. 84.
Residual 12946. 1017 12.

Table 5.4.2-2 Summary of regression model used to estimate subjective quality
SL.

151

--

~ _ *.I~At~~~- *.-+*±~%- ~ ~ ~. ~ .A A~-.Ia



FREQUENCY OF OCCURANCE
0 .50 .100 .150

C.

- r-

* .

* r-

"" a - U- a * U *

valu ( ax s)

n152

* 1-

0 0

*I -

C 5•

00

-o

• .- .. .

* S-.,: 2 •'t - " '-



that the same range of quality degradation is provided by fewer distortion e

*-types.

There are primarily two types of distortions which excite the subjective

scale SL. These are bandlimiting distortions and narrowband noise distortions. -

This suggests that a composite objective measure would be most appropriate for

tracking subjective quality SL. The objective measure tried has, for its first

component, a frequency variant spectral distance measure and, for its second .

component, a frequency variant noise measure. An important point as yet

unmentioned concerning SL is that the bandlimiting and additive noise

distortions which exemplify SL are time invariant systems. Therefore their

distortion characteristics should be recoverable from the time averaged

spectrum of the reference and distorted speech waveforms. The method used to

* estimate the spectrum of the waveforms was to pass the waveform through a

filter bank and compute the mean square value of each filter output for each

utterance. This is the same critical band filter bank used for studying aural

based objective measure in Chapter 4. In this way an estimate of the power in .

frequency bands for an entire uttera-nc. is obtained. The power in bands could

be combined, as appropriate, to provide coarser estimates of the reference and

distortion spectrum. Broader bands were found to produce more easily

interpreted objective measures.

The spectral distance objective measure has the following form:

V(: ,s,d,k) "--

O1(s,dk) logg0 ( MIN( MAX(-----------, T ), TH ) ) 5.4.2-1
10,,4k m~n max

In the preceding equations. V(.,s,dk) and V(.,s,4,k) are the mean square -

values in .he band k for the distorted and reference waveforms, respectively.

Again, this average is taken over the entire utterance. Thmin and T1Imax are

parameters of the measure. The objective variables O1(s,d,k) were then S
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transformed into a new distance variable, O'(sb,k). which has coarser

frequency resolution. Instead of having 25 bands 010 had only five bands. and •-

is obtained by simning O1(s,dk) as follows: ,

Ol1(s,d.k) 01(s,d,k)
Band No. Band No.

S1- 5
2 6- 10
3 11-15
4 16 - 20
5 21 -25

In addition, a monotonic and uni-modal regression was done on the

function Ol(sd,k) and stress for the functional forms lowpass, highpass,

bandpass and band reject was computed. Computing stress for the functional 6

"* form of lowpass requires computing a monotonically increasing regression,

highpass requires a decreasing regression. Bandpass requires computing a global

maximum uni-modal regression and band reject requires a global minimum uni- _

modal regression. The motivation for computing these stresses was to measure

the extent to which the distortion applied to the speech had one of these

bandllmltlng functional forms. The total number of independent variables usEd

* . this objective measure was seven: five spectral distance variables for five

frequ-ncy bands and two stress variables, one for the functional form lowpass,

represented as 01*(s,d,6), and one for bandpass, represented as 01*(sd,7). The

remaining .t.ress variables did not significantly contribute to the regression - -

model.

The second part of the composite measure is an additive noise measure.

The functional form of this measure is as follows:

02(sd,k) = lOg 10  (I/NF) V(f,sd,k) +1) 5.4.2-2 -
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where f are all silent frames in the reference utterance and NF is the number

of silent frames. Like the spectral distance measure, the 25 bands in

02(s,d,k) are combined to form five bands in a new additive noise measure,

020(s,d,k). The five variables in this measure are the noise power in the

extended bands as measured during intervals of known speech inactivity in the

distorted signal.

The two measures were combined in a linear function with weights

determined by regression analysis. The resultant measure was formulated as:

7 5

OSL(Sd) = + 1 0l1O1*(sd.j) + 32.U2*(sd.j) 5.4.2-3
j=l j=l

where OsL(Sd) represents the objective estimate of the subjective quality SL.

Table 5.4.2-2 shows the results of the multiple linear regression

analysis used to formulate 0 SL. The performance of this measure is only fair,

*' as its correlation with SL is .74, which corresponds to an explanation of only

55% of the variability in the subjective quality SL. In all probability this

poor performance is due to the difficulty of modeling the diverse mix of

distortions which excite SL. This was, never the less, the best objective

measure for this parametric quality.

5.4,3 SF: Fluttering, Bubbling

This subjective quality quantifies the degree to which the speech signal

has a fluttering or bubbling quality. Table 5.4.3-1 lists those distortions

which excite the SF subjectivo scale. The dominant distortion In this table is

by far pole distortions. The controlled pole distortions explicitly alter the

original speech pole locations, while the parametric coder distortions bascd on

*O an all-pole vocal tract model distort the speech pole locations in a more
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SF fluttering bubbling

DISTORTION MAX MIN RA1GE

interrupted, period 1024 85.50 50.90 34.60

LPC 85.30 51.10 34.20 i.

PD 400 800, frequency 85.80 52.60 33.20

interrupted, period = 300 80.90 48.70 32.20 -

VEV 13 84.90 60.70 24.20

VEY 7 83.30 60.30 23.00

PD 1300 - 1900. frequency 87.90 66.30 21.60

PD 400 - 800, radial 83.60 63.90 19.70

APC 88.80 67.30 19.30

HD 400 - 800 83.20 64.40 18.80

ECHO 88.60 70.80 17.80

ED 2800 - 3400 79.80 62.90 16.00

BD 100 - 3500 80.40 63.90 18.50 "

PD 800- 1300, frequency 84.10 68.10 16.00

PD 000 - 400, radial 88.60 72.90 15.70 i".1

PD 1300- 1900, radial 88.60 73.10 15,50

PD 2600 - 3400, radial 87.50 72.80 14.90

center clipping 85.80 72.10 13.50 ,

Table 5.4.3-1 Distortions which most prominently excite subjective quality i1

SF. listed in order of decreasing significance.
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complex way through modeling errors and parameter quantization. Two prominent

exceptions are the first and fourth table entries: the interrupted distortions.

These are understandably perceived as fluttering because their interruptions

are periodic. The presence of these interrupted distortions in Table 5.4.3-1

suggests that it is the periodic quality of the controlled and coder pole

distortions which correlate most highly with subjective fluttering and

bubbling. .

Though it is clear that the source of degradations in the subjective

quality fluttering or bubbling is primarily due to LPC pole position errors,

this research was unable to identify a good measure for such errors. The

interrupted component of SF could clearly be estimated by the elements of the

SI objective measure, but this still leaves pole position errors or, more ,

precisely, formant frequency and bandwidth errors, to be estimated. Further .

experimentation needs to be done to determine the degree to which

formant frequency and formant bandwidth are correlated to SF.

In order to perform such experiments one needs a means of determining .

formant frequency and bandwidth for a given speech frame. The vocal tract

system function as derived from LPC analysis is a good starting point for

finding these parameters. The difficulty in processing this smoothed

spectrum is that formant frequencies correspond to local maximums of the

spectrum and are therefore hard to track. One must estimate and ;n some

sense remove the global spectral tilt before attempting to estimate

formant frequencies. Once the formants arc known, calculating their

bandwidths Is rvlatively straightforward.

Once formant frequency and bandwidth can be reliably estimated, 7

some function of the degree of variability of these parameters would seem

to be a good physical correlate to subjective fluttering. One
possibility is to match the first three formants in the original and the
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distorted speech frames and to calculate the variance of the difference

between the distorted and original formant frequencies for each of the three

pairs. The variance would be computed over the set of all speech frames. The

same calculation could be done for formant bandwidth. These six. objective

measure variables would then be the basis for an objective measure for

estimating SF.

5.4.4 BN: Hissing, Rushing .

This scale specifies the extent to which the background of the

distorted signal has a hissing or rushing quality. Table 5.4.4-1 lists those

distortions which most excite the BN4 subjective scale. This scale is in

contrast to the ones discussed thus far in that a very homogeneous set of

controlled distortions excite this subjective quality, namely additive noise

distortions. The middle frequency narrowband additive noise distortions have

the greatest perceptual ivpact, with the broadband additive noise being

perceived as almost the same degree of distortion. At the bottom of the table

is quantization distortion which is not an anomaly since, for medium to fine -,

quantization levels, the quantization noise is nearly uncorrelated with the

signal and is understandably perceived as a background process.

From the evidence of the distortions which excite the BN subjective

scale, a function which measures additive noise would oe an appropriate

objective measure for this scale. The objective measure used is that of

equation 5.3.2-2, but here it is used by itself to estimate UN. The measure

S02(s,d,k) is transformed into 02*(s,d,k) in order to consolidate the number of

bands. The transformation is as follows:

02*(s.d,k) 02(sd,k)
Band No, Band No.

S1- 5
2 6- 16

Note that bands 17 through 25 were not used in this measure. Itie objective
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BN hissing. rushing

DISTORTION MAX MIN RANGE

800 - 1300 Hz noise 80.40 49.30 31.10

broadband additive noise 83.40 54.00 29.40

400 - 800 Hz noise 79.10 50.40 28.70

0 - 400 Hz noise 85.80 66.40 19.40

1300 - 1900 Hz noise 82.10 69.60 12.50

2600 - 3400 Hz noise 87.20 74.80 12.40

1900 - 2600 Hz noise 84.00 72.80 11.20

quantization 85.30 75.60 9.70

Table 5.4.4-1 Distortions which most prominently excite subjective quality
BN, listed in order of decreasing significance.

1° ,

Multiple R .9136 Standard error of estimate 2.3199
Multiple R square .8348

Analysis of Variance

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F Ratio

Regression 28598. 2 14299. 2656.
Residual 5667. 1053 5.

Table 5.4.4-2 Surm•ary of regression model used to estimate subjective quality
BN.
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final objective measure used to estimate BN was then:

2

OEN(s.d) =0 + 0.O20(s,d,j) 5.3.3-1,-•
j=1

The performance of this measure is extremely good. The objective

measure results are shown in Table 5.4.4-2. The primary reason for such good -

performance, correlation of .90, is that all distortions which excite BN are

very similar and hence can be modeled well as a group. Another reason is that

there are relatively few distortions which excite BN, as can be seen from the .

narrow central lobe and the low left tail of Figure 5.4.4-1. This means that

the regression model need only account for the variance of these few

distortions, and can approximate the quality scores of the other distortions -

with a constant. Of all parametric objective measures studied, this measure

was by far the most successful.

5.4.5 BF: Chirping, Bubbling

This subjective quality quantifies the degree to which the speech

background has a chirping or bubbling quality. Table 5.4.5-1 lists those

distortions which excite the BF subjective scale. This scale is very similar to .

SF, or signal fluttering and bubbling. The principal differences are, first.

that interrupted does not excite BF where it was at the top of the list for SF.

This is understandable since an interruption of the speech waveform is a

distortion entirely associated with the speech signal and produces no spurious

or uncorrelated background distortion. The second difference is that high band

narrowband noise distortions excite the BF scale, where they did not excite SF.

These distortions are most likely perceived as chirping background distortions.

The rest of the .iurtio, ii.,Ltd in Table 5.4.5-1 are for the most part the

same distortions associated with SF, listed in Table 5.4.3-1. Therefore an
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BF
chirping.
bubbling

DISTORTION MAX MIN RANGE
PD 1300 - 1900, radial 85.70 54.40 31.30

PD 800 - 1300, frequency 86.40 57.20 29.20

LPC 85.10 56.00 29.10

PD 1900 - 2600. radial 85.10 57.90 27.20

PD 400 - 800. rad'al 85.30 59.20 26.10

PD 400 - 800. frequency 85.60 59.60 28.00

PD 000 - 400, radial 85.20 59.60 25.60

PD 800 - 1300. radial 87.50 65.90 21.60

PD 1300 - 1900, frequency 86.90 66.30 20.60

VEV 7 77.40 59.00 18.40

VEV 13 76.20 59.90 16.30

PD 2600 - 3400, frequency 86.70 70.70 16.00

PD 2600 - 3400. radial 90.00 74.60 15.40

APC 84.40 69.10 15.30

PD 1900 - 2500. frequency 87.50 72.30 15.20

PD 2600 - 3400, frequency 87.50 73.80 13.70

BD 2600 - 3400 83.60 70.80 12.80

2600- 3400 Hz noise 85.10 72.70 12.40

BD 100 - 3500 81.80 69.80 12.00

1900 - 2600 Hz noise 83.60 71.60 12.00

BD 400 - 800 83.50 71.80 11.70

1300 - 1900 Hz noise 86.40 74.70 11.70

BD 1300 - 1900 83.00 71.90 11.10

quantization 85.10 74.10 11.00

HID 800 - 1300 81.60 70.80 10.80
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objective measure for estimating BF should be similar to a measure for SF.

Referring back to the multidimensional scaling of the subjective data base, I
Figure 5.3.2-1. one can see that SF and BF are both at the bottom of the plot

and are rather close together. confirming the fact that the two quality scales

detect perceptually similar distortions.

This research was unable to identify good objective measures for BF.

This is largely to be expected since SF was also difficult to -

objectively estimate. The same insight into objective measures for SF, as

discussed in section 5.4.3, largely holds true for objective measures for BF.

The primary difference is that objective estimates of interrupted are not

needed for estimating BF while objective estimates of background noise are.

The latter objective estimates are discussed in section 5.4.4..

5.4.6 SI: Irregular, Interrupted

This parametric quality scale describes the degree to which the speech

signal is irregular and interrupted. Table 5.4.6-I lists distortions which

excite this subjective scale. The most prominent distortion is the slow :-1

periodic interruption, with the fast periodic interruption falling in the .-
middle of the table. These two distortions certainly produce perceptually

interrupted speech. It is difficult to find an objective quality which is

common to the remainder of the distortions which excite SI. They most likely

excite the subjective quality irregular, rather than interrupted. The remaining .

distortions are not totally disjoint, however. Both APCM and ADPCM excite SI,

and the two highest bands of the narrowband additive noise excite SI. Several

pole distortions also excite SI.

• Since interrupted is the most important aspect of the SI scale and since

this quality is easy to model objectively, the measure used for estimating SI

"was designed to respond only to interruptions of the speech waveform. In

* particular the average number of consecutive frames for which the distorted -
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SI irregular, Interrupted

DISTORTION MAX MIN RANGE

interrupted, period = 1024 87.90 38.40 49.50

AID 91.00 49.60 41.40

2600 - 3400 Hz noise 87.10 62.50 24.60 j
ADPCA 85.00 60.50 24.50

center clipping 87.60 63.90 23.70

interrupted, period 300 86.80 66.20 20.60 .

APCU 85.20 65.10 20.10

ECHO 89.90 76.20 13.70

PD 800- 1300, frequency 89.50 76.50 13.00

PD 1900 - 2600, radial 89.90 77.80 12.10

PD 000 - 400, radial 89.60 79.10 10.50 .7

PD 1900 - 2600, frequency 89.20 79.30 , 9.90

1900 - 2600 Hz noise 87.10 78.70 8.40 ..

Table 5.4.6-1 Distortions which most prominently excite subjective quality
SI. listed in order of decreasing significance.

Multiple R .8483 Standard error of estimate 2.6043
Multiple R square .7196

Analysis of Variance

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F Ratio

Regress i on 17454. 4 4363. 643.
Residual 6802. 1003 6.

Table 5.4.6-2 Summary of regression model used to estimate subjective quality
S1.
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speech energy was either below a specified threshold or above the threshold is

measured as a gauge of interruption. The measure is best expressed using .

intermediate variables follows:

log1 T O (1/FL) L.X (m ,sd) 0... 5

mf

RATIO(f,s.d) =--------------f----------------- 5.4.6-1

log 1 0 ( (1/FL) I X(msO) )0.5 ) .m f

ON(s,d) Average run length of frames for which
(RATIO(fsd) > TH) 5.4.6-2

OFF(s,d) Average run length of frames for :h

(RATIO(f.s,d) < TH) 5.4.6-3

O(s,d.l) OFF(ý !) 5.4.6-4 -.

O F F ( s , d ) 
-= :

O(s.d,2) = 5.4.6--5
(ON(s,d) + OFF(s,d))

O(s.d,3) = O(s,d.1) 5.4.6-6

O(s,d,4) O(s,d,2) 5.4.6-7 .

4

0sl(s,d) 0 + 3O(s,d,j) 5.4.6-8
jp" 

_r 0
Parameters FL and TI1 can be varied as desired to alter the measure. Parameter

FL Is the number of samples in a frame of speech and parameter III specifies thce

threshold between objectively interrupted and non-interrupted speech. In the

foi-aula apecifying RATIO, mf is the index of the speech samples comprising

fr:-ie f. The objective measure variables are specified in equations 5.4.6-4

through 5.4.6-7. Note that the last. two objective variables are simply the

fir'd two objective variablcs squared. Therefore the final objective measure

is,',• ic d in equation b.1.6-8 is actually a multiple linear and polynomial

regression equation.
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The results of using regression analysis to find the best estimate, 0 1.

of quality SI are shown in Table 5.4.6.2. The measure performed reasonably

well, as measured by a multiple R of .85. with the restriction that not all the

distortions were included in the anaiysis. Specifically, ADPOA, APCM and ECHO

were not included in the analysis. ECHO was excluded because it was not

representative of typical speech coder distortions. However, ADPCM and APCM

were excluded because their distortions were not being modeled well by this L7A

- objective measure. Leaving them out greatly improved the correlation with SI.

* As mentioned previously, these two coder distortions most likely produce a

subjectively irregular distortion. This is, admittedly, a rather major

shortcoming of this objective measure. but a future composite measure made up

S- of this measure and another measure which does track perceived irregularity

would rectify this deficiency.

5.4.7 SH: Distant. Thin

This last subjective quality measures the degree to which the distorted

speech sounds distant or thin. The distortions which most dramatically excite '

this parametric quality scale are bandlimiting distortions, specifically '-

highpass and bandpass distortions. These two distortions are ordered one and
I

two in Table 5.4.7-1. For the higher bands, the bandpass filtering is very

* similar to highpass filtering so it is reasonable that these two distortions

are grouped together. They indicate that highpass filtering is the most

impo .ant objective correlate to speech being perceived as distant and thin.

Two seemingly out of place distortions found in Table 5.4.7-1 are CVSD and

lowpass filtering. On closer inspection CVSD does in fact produce a

bandlimiting distortion which slightly decreases the energy of speech in a

broad band centered at approximately 200011z. So the only fcaturc Lhcsc two

distortions ha in common is that they both diminish speech energy in mid

band, although lowpass filtering eliminates irtually all out of band energy. A
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1SH distant, thin

DISTORTION MAX MIN RANGE I
highpass filtering 84.70 54.20 30.50 " '.
bandpass filtering 85.00 60.60 24.40

0 - 400 Hz noise 86.90 75.40 11.50 .

CVSD 90.30 79.30 11.00

lowpass filtering 87.90 78.00 9.90

peak clipping 87.10 79.60 7.50

Table 5.4.7-1 Distortions which most prominently excite subjective quality --
SH, listed in order of decreasing significance...

Multiple R .8540 Standard error of estimate 2.4545 A

Multiple R square .7293

Analysis of Variance "

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F Ratio
Regression 17023. 8 2837. 470.
Residual 6319. 1049 6,

Table 5.4.7-2 Summary of regression model used to estimate subjective quality -

S11.
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possible conclusion is that like SL, SH is correlated to a decrease in mid-band

speech energy. Other distortions which excite SH are peak clipping and the

lowest band of narrowband additive noise. Peak clipping smears energy across

the entire spectrum which is perceived primarily as high frequency distortion

due to the low level of spcech energy at high frequencies. Therefore these two

distortions produce noise at opposite ends of the spectrum. This effect may be

correlated to the quality distant and thin.

The objective measure used to estimate SH concentrated on the principle

objective feature of SH which is highpass filtering. The objective measure is

a spectral distance measure which is identical to the one used to estimate SL,

specified in equations 5.3.2-1 and including the subsequent transformation to

reduce the number of bands to five. The objective distance variables are

combined in a rogression equation for estimating SH as follows:

5

O (sd) = + L 30O(sd'j) 5.4.7-1 4
-0 1

Table 5.4.7-2 shows the results of this analysis. Performance for this measure

was significantly better than for the measure which estimates SL. For this . I

measure a correlation of ,05 ,ins obtained. This is primarily due to the fact.

that the distortions which produce most of the variance in SH, highpass and

bandpass filtering, are relatively homogeneous and therefore can be effectively - I

modeled.

5.5 Discussion

In the previous section we have presented four parametric objective

measures. The performance of these measures range from very good (a

correlation of 0.90 for I1N) to fair (a correlation of 0.74 for Sl,). Though

these results are quite good, they are more remarkable because the
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objective measures estimated subjective quality over the entire distorted -.

data base, (with the exception of OSI.) This is encouraging because it

indicates that these objective measures are applicable to a broad range

of speech distortions.

Objective measures with similar performance could not be found for

subjective qualities SD, SF and BF, though the probable form of measures for

estimating these subjective qualities was discussed. Further analysis is

necessary to better understand the physical manifestations of these perceptual

qualities before good measures for them can be designed.

I In designing each parametric objective measure, we have attempted to

build regression models in which all of the regression weights have

an intuitively satisfying physical interpretation. The ability to assign a

meaning to the regression coefficients is a check on the appropriateness of

the regression model. More complex models with relatively meaningless

regression weights have been avoided. Even though such models are able to

provide improved performance, it is suspected that they do so by accounting

for variations in the noise of the data and do not provide improved

modeling of the subjective speech perception process.

In some cases the parametric objective measure results may have

utility by themselves. For example, a low score on the BN objective

measure may indicate excessive additive noise distortion in the

speech system, while a low score on the SF objective measure may indicate

insufficient quantization levels in the vocal tract parameters of an LPC based

speech coder. In general, the parametric measures yield specific information
4|

which may be extremely useful in diagnosing the cause of voice quality

degradation in a communications system.

However, for verification of overall performance of a speech

communication network, an objeclive measure for composite acceptability
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is needed. Such a measure can be used in the design of speech communication

systems and in the field maintenance of speech systems. Given that we have

a full set of parametric objective measures which provide good estimates of

SD, SL, SF. 13N, BF. SI and SH. the essential information in these parametric o

measures, the objective measure variables, can be used to build a measure of

composite acceptability. The form of the objective measure would be as

follows:

m

OCA =i0 + 1 0 j 5.5-1 -..j=1

where i is an index over speakers and distortion systems and j is an index

over the included objective measure variables. The variables 0. are

the same objective variables used in constructing the parametric

measures, though they are now lumped together in a single regression model

and each is weighted by a •3 unique to this new model. A problem with

equation 5.5-1 is that it models CA as a linear combination of the

objective measure variables. This inadequacy can be lessened if interaction

terms, or product terms involving the objective measure variables,

"ar- added to the model.

The key to designing a good measure for composite acceptability

is to represent all significant perceptual dimensions of acceptability

in the model. This point was illustrated by the multidimensional

scaling analysis of the subjective data base in section 5.3.2. Because

the objective measure variables used in equation 5.5-1 contain all

the information needed to estimate the most significant parametric

subjective qualities, they in some sense span the perceptual space of

subjective composite acceptability. It is therefore reasonable to expect n_
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that this measuie for CA will perform as well as any of the individual 
A4-J

measures of parametric subjective quality. "

J
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CIIAPTER 6

PRECLASSIFIED OBJECTIVE SPEECH QUALITY MEASURES

6.1 Introduction

In the previous two chapters, two distinct approaches to the design of

objective speech quality measures were studied in some detail. Chapter 4

studied the use of aural models in designing objective measures while Chapter 5

studied the use of parametric objective measures for the same purpose. Both of

these approaches met with some degree of success. This chapter introduces and

develops yet another separate approach to designing objective quality measures:

that of preclassifying (or labeling) the distortions before the application of

the objective measures. The basic procedure used in this approach has three

steps. In the first of these, each speech distortion to be measured is

assigned to a specific class of distortions. This classification may be done

either objectively or subjectively, although objective classification is much %

more desirable. Once all of the distortions are classified, then separate

objective measures are designed for each separate class of distortion.

Finally, these separate classified objective measured are combined to form a

single, broadly based objective measure.

It is simple to show that the preclassification of distortions leads to

vast variations in the performance of simple objective measures. Figure 6.1-1

shows a plot of the correlation coefficient for a log spectral distance measure

as a function of the value of p in the L norm [6.1]. The results are shown
p

separately for the cases in which the objective measure is applied to all

distortions in the distorted data base, and three distortion subscLs:

controlled distortions, waveform coders, and all coders. Clearly, the log

spectral distance measure performs much better on some of these d'it.ortions

than on others. The point here is that if the disLortions could uc c orrectly
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classified, then objective measures which had been specifically designed for

the proper class could be applied, resulting in better overall performance.

8.2 Objective Measures for Narrow Distortion Classes

There are really two questions to be addressed here. The first question .

is given a good measure for classifying measures, what is the expected

improvement in the overall performance of the objective measures. If the

performance improvement is small, then there is no need for more extensive

study. If the answer to the first question is positive, then the second

question is how to assign objectively a particular distortion to a particular

class in order to realize the expected improvement.

Figures 6.2-1 and 6.2-2 show the composite acceptability (CA) results for

the the six distortion levels of CVSD and APC respectively. In both cases, the

results are displayed parametrically as a function or talker. There are two -1

points which should be noted from these figures. First, for each individual

talker, these results could be well represented by a first or second order

regression model. Second, there is a considerable and consistent spread of -

results between the talkers. Hence, subjective measure resultn from one talker

are not necessarily good predictors of subjective measure results from another ..

talker. Ciearly, a good classified objective measure must also exhibit this

talker selcctivity if it is going to be a good predictor of subjective

responses. . "

Figures 6.2-3 and 6.2-4 illustrate the use of narrowly classified simple --

objective measures for CVSD and APC. The measures illustrated on these plots

include the log spectral distance measure with linear regression, the log

spectral distance measure with non-linear regression, and the short-timer-

frequency variant .1NR. Clearly, the performance of these simple measures is

substantially improved by the classification process.

Figures 6.2-5 and 6.2-6 illustrate the use of narrowly classified -
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OBJECTIVE ESITMATES FOR CVSD FROM CLASSIFIED SIMPLE MEASURES

0÷

Subjective Estimate

Spectral Distance Measure-

-~ o Nonlinear Spectral

Distance Measure
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4 Figure 6.2-3 Objective Estimates for Composite Acceptabitity (CA) for CVSD from
SimpFc Clasnified Objectivp Measures
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OBJECTIVE ESITMATES FOR APC FROM CLASSIFIED SIMPLE MEASURES
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Figure 6.2-4 Objective Estimates for Composite Acceptability (CA) for APC from
Simple Classified Objective Measurcs
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composite objective measures for CVSD and APC. In each case, the measure used

was trained specifically to predict only the distortions in the two classes.

The objective measures used were the short-time frequency-variant SNR, a linear

multi-regression composite measure, and a non-linear multi-regression composite

measu~re [6.1]. As can be seen from these plots, the performance of each of the

narrowly defined objective measures is, on the whole, very good. Indeed, a

* comparisons with Figures 6.2-1 and 6.2-2 show that these narrow objective

* measures are better predictors of CA than individual one-talker subjective

measures. Figures 6.2-7 and 6.4-8 illustrate the reason for this good
a

performance. These figures show the c.bjective and subjective estimates of

composite acceptability for the linear composite measure as a function of

individual talker. Clearly, this measure has good talker selectivity.

Based on the above discussion, it is possible to make two general

statements. First, if the class of distortions of interest are narrow enough,

then it is pos.•iblc to design composite measurcs which predict the subjective

quality wil.h remarkable accuracy. This is an important fact if the goal is to .:

determine if a known coding system is performing up to standard and to measure

the level of the reduced performance if it is not. Second. if the class of

distortions of interest is broad, then the required task is to classify the -

c andidate into a narrow class so as to gain the advantage discussed above. So

the fundamental question reduces to finding procedures to classify distortions

objectively.

6.3 identification of Homogeneous Subsets in the Distorted Data Base

6.3.1 Introduction
4-

There are two broad approaches to searching for improved objective

speech quality measures. The first is to find measures which proviac improved

quality estimates over a broad r~ingc of distortions. The second is to find

measures which provide improved quality estimates •ver a restricted range of All
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OBJECTIVE ESITMATES FOR CVSD FROM CLASSIFIED COMPOSITE MEASURES
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distortions. As stated, the two approaches are the same except for the number

or type of distortions that are considered in the analysis. The second approach

can be simplified, and the two approaches can be made more distinct if the

problem is restated as follows: the first approach searches for an objective .

quality measure given a set of speech distortions, while the second approach

searches for a set of speech distortions given an objective quality measure. In

both cases the criterion to be satisfied by the search is maximization of the I

correlation between the objective measure of speech quality and the subjective

measure of speech quality over the speech distortions considered. This section

reports on work done using the second approach as a means of improving |

objective speech quality measures.

One can think of the second approach as an objective classification

procedure in which speech distortions are objectively categorized into two I

classes: one class contains the distortions used to assess the objective

measure's performance and the other class contains the distortions to be

ignored. The approach is similar to that of restricting objective measures to

operate only on certain classes of distortions, such as waveform coders; but

here the classes of distortions are specified objectively rather than

heuristically. The intent is to select a set of distortions objectively which,

to a great extent, is homogeneous with respect to the relationship between

their objectively measured speech quality and their subjectively measured

speech quality. It was hoped that these homogeneous sets of distortions would I

provide two insights into the objective measure being studied. First, that they

would show what kinds of specific distortions are best matched to an objective

measure and, second, that they would indicate, by means of common features of -

the set's members, what overall physical characteristics of the distortions are

being measured by the objective quality measure to provide the estimate of

subjective speech quality. The next step in this process would be, of course, -
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to use these insights to adjust or reformulate an objective measure to give a

better performance over a given class of speech distortions.

In order to further motivate the approach of searching for homogeneous

subsets as a means of improving objective measures, consider an experiment

using the log area ratio objective measure. The experiment consists of three

re-ression analyses. In the first analysis a sixth order polynomial regression

model was used:

6

CAi = 0+ j + . 6.3-1"
j=l

in which the objective measure variable, 0. was the log area ratio measure, and1

0 the dependent variable, CA., was composite acceptability. The regression._
I

coefficients, •3 were estimated using the entire set of 44 speech distortions.

Subscript j is an index over the order of the model term and subscript i is an

index over the 1056 speaker-distortion systems in the distorted speech data .

base. The resulting correlation of subjective composite acceptability to the

regression model's estimated composite acceptability was 0.67, so that the log

area iaLio objective measure was able to account for only 44.4 percent of the

variance of composite acceptability. This result is comparable to the

performance of several other simple objective measures, though this performance

. is not sufficient for providing reliable estimates of subjective speech -

quality. Table 6.3-1 suimarizes these results.

The second regression analysis used the same form as equation 6.3-1,

except that the data set was restricted: just four waveform coder distortions -

were included in the analysis, as specified in Table 6.3-2(a). The results of

* the analysis, shown in Table 6.3-2(b), are that over the distortion subset

specified the log area ratio objective measure was able to account for 49.9 .

190

. .--.. _.



Regression
Degree Coefficient

0 67.21
1 -14.10
2 5.99
3 -1.44
4 .18
5 -.01
6 .00

Multiple R-square .44395

Table 6.3-1 The results using a sixth order polynomial regression model to
estimate composite acceptability. The objective measure was the
log area ratio distance measure.

Waveform distortions included in the analysis:

Adaptive differential pulse code modulation (ADPCM)
Adaptive pulse code modulation (APCM)
Continuously variable slope delta modulation (CVSD)
Adaptive predictive coder (APC)

(a)

Regression
Degree Coefficient

0 75.73
1 68.94 6
2 -110.80
3 56.09
4 -12.98
5 1.41
6 -0.06

Multiple R-square .49913

(b)

Table 6.3-2 Part (a) lists the four distortions over which the sixth order
polynomial regression analy3is was done Part (b) lists the
"results of the regression analysis. The objective measure uses
was the log area ratio measure.
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A percent of the variance of composite acceptability. This is a surprisingly

small improvement as compared to its performance over the entire set of speech

distortions.

The central issue in this experiment is to find out why the log area

ratio objective measure performed so poorly over an apparently homogenenus set

of waveform coder distortions. One method of investigating this issue is to

hypothesize that each distortion conforms to a distinctly different regression

model as opposed to a single model as in equation 6.3-1. A means to explore

this hypothesis is to use an indicator variable regression model, stated as

follows:

CAi (= 0 + P IZ 1 2V2 + 13Z3) + (P4 + P 5z + + 6 Z2 + 7 Z3 )O1 i +i

6.3-2

Note that this is a linear regression model as opposed to the polynomial

regression model used in the previous analysis. The variables Z., which have
J

the value either zero or one, are indicator variables, so called because they

indicate to which distortion data 0. belongs to as follows:

"Waveform Coder
Z1 Z2 Z3 Distortion

0 0 0 ADPCM
1 0 0 APCM
0 1 0 CYSD
0 0 1 APC

The indicator variables permit each distortion to have a unique slope and

intercept in the regression model. The results of the analysis are shown in

Table 6-3-3. The model has improved dramatically, in that it now accounts for

83 percent of the variance of composite acceptability. Hlence the ihypothesis

that each distortion has a unique model was proven true. In particular, Table

6.3-3 shows that coefricients P 5 through P7 are not statistically different

from zero, so that the major difference between models for each distortion is
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Regression
Variable Coefficient

0 60.10
1 -4.75
;? -0.23
3 16.10
4 11.29
5 0. 94
6 -0.45

7 0.26

Multiple R .9126
Multiple R-square .8329

Table 6.1-3 Results of the indicator variable regression model analysis.

Again, the objective measure used was the log area ratio measure.
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that they each have a different intercept value. This is dramatically

illustrated in Figure 6.3-1. The solid lines are the regression curves for each

of the four speech distortions. One can see that they have a iimilar slope but

distinctly different intercepts. The dashed curve is the regression curve

obtained from the previous sixth order polynomial regression analysis of this

data set. The polynomial curve did not represent the underlying model of Piy of

the distortions very well, and hence had poor performance.

What this experiment clearly illustrates is that a heuristically chosen

group of speech distortions, such as a group of waveform coders, does not

guarantee a homogeneous set of distortions relative to their regression models.

It therefore seems reasonable to use a blind statistical approach, as will be

discussed in the following section. to select speech distortions which do have

similar regression models and can therefore be grouped together and operated on

by a given objective measure to estimate subjective corr-osite acceptability

6.3.2 The Objective Classification Procedure

The distortion classification procedure assumes that the objective

measure is specified, and that it is a measure with only one objective measure

variable. The objective measures that were considered are a group Lf the best

simple objective measures proposed by Barnwell and Voiers [6.13. Given the

objective measure, the procedure finds the 44 distortion subsets, with number

of members one through 44 respectively, which provide the best correlation

between the objective measure and subjective composite acceptability. The

procedure can be divided into two sections. The first section of the procedure

searches through all possible distortion subsets for the subset of size N which

provides the greatest correlation between the selected objective measure and

composite acceptability. The correlation is compu,'-, ,nly over the members of

the subset. Lect this subset of size N be c~jiled S . ."is •,uld bc the only

section of the procedure were it not for the very ierg(, nbcr of computations
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*Figure 6.3-1 Each of the four solid curves represents the best linear
regression curve fit for each of four distortions. The dashed
line represents the best sizth order regression curve fit for all
four distortions taken together.
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involved as the number of members in the subset grows larger. In the

investigation of all subsets of size N the number of correlations that must be

computed is equal to the number of combinations of 44 items taken N at a time,

or:

44! (6.3-3)

(44-N)! N! I
An exhaustive search of all subsets of all sizes would then require a number of I
correlation calculations equal to the sum of 44 items taken N at a time for N

equals one to 44, a number which exceeds 1012 Because of this excessive

number of calculations, the first part of the procedure was only done for

subsets of size one through five.

The second part of the procedure circumvents the problem of burdensome

calculations at the expense of being sub-optimal. This part searches for a

distortion not already a member of set SN 1 Iwhich, when added to SN.1' produces

a new set S which provides the greatest correlation between the objective
NA

measure and composite acceptability. Again, the correlation is computed over . *!

the set S This step is repeated for N equals 6 through 44. The entir."

algorithm is summarized in Figure 6.3.2-1.

G.3.3 Results of Objective Classification into Homogeneous Subsetu

The results of the subset classification experiment are, in general,

inconclusive. The graph in Figure 6.3.3-1 shows how the correlation coefficient
S

for the best subset varies with the number of members in each subset for each 4.-

of the objective measures studied. These results look quite promising: for

each of the four measures, a subset of fifteen distortions , or one-third of

the total number of distortions, had a correlation of better than 0.90.

Therefore all of these objective measures are producing very good estimates of

subjective composite acceptability for earnh of the distortions in the subsets.

These results are less encouraging when one examines the types of dintor ions
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contained in the subsets. Table 6.3.3-1 lists the distortions contained in the

subset of fifteen distortions for each of the objective measures presented in

Figure 6.3.3-1.

The most remarkable aspect of these subsetu is that each contains a very

diverse group of distortions. This is quite the contrary of what was hoped in

this experiment. A close examination of each subset reveals that there are one

subset associated with the log spectral distance measure contains three

contiguous bands of additive narrowband noise distortions and two contiguous

bands of angular pole distortions. Similarly, the subset associated with the

Itakura distance measure contains three contiguous bands of additive narrowband

noise and four bands of angular pole distortions. The subset associated with

the log arei ratio distance measure contains three bandlimiting filtering

distortions, three contiguous additive narrowband noise distortions and three ..

contiguous banded in-phase noise distortions. Though there are these limited

similarities between distortions in the subsets, in general there is not enough

commonality between distortions to make any firm conclusions regarding the type

of distortions which are best suited for the objective measures. Since it is __

not clear what general qualities these distortions have in common, it is even

less clear what physical qualities of those distortions are being measured to

yield the undeniably good estimates of subjective composite acceptability. .

Hence we are, unfortunately, unable to make hypotheses about the underlying

mechanisms which, in a statistical sense, make this set homogeneous.

6.3.4 Conclusions ".M

Intuitively the blind statistical method for choosing homogeneous

distortion subsets, as presented in this section, has merit in that it

identifies, by the very nature of the algorithm, near-optimal subsets. For all

objective measures investigated the performance over subsets containing one- S
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Log Spectral Distance Nonlinear Spectral Distance
Measure: Measure:

center clipping 800 - 1300 Hz noise
400 - 800 Hz noise PD 2600 - 3400, frequency
PD 1900 - 2600, frequency PD 200 - 400, f.-equency 4
PD 2600 - 3400, radial 400 - 800 Hz noise
ADPC)( VEV 13
PD 200 - 400, frequency VEV 7
Bo 1300 - 1900 APC
AP(2( BD 1300 - 1900
VE 7 ,.APC€M

VEV 13 PD 2600 - 3400, radial
800 - 1300 Hz noise 0 - 400 Hz noise
peak clipping BD 800 - 1300
PD 1300 - 1900, frequency center clipping
0 - 400 Hz noise PD 1300 - 1900, frequency
APC quantization

Log Area Ratio Distance Itakura Distance
Measure: Measure:

bandpass filtering 800 - 1300 Hz noise
2600 - 3400 Hz noise ED 1300 - 1900

PD 2600 - 3400, frequency PD 200 - 400, frequency
PO 200 - 400, frequency ADPCM
BD 1900 - 2600 center clipping
1900 - 2600 Hz noise PD 2600 - 3400, radial
BD 100 - 400 APCM
1300 - 2900 Hz noise P!) 1900 - 2600, frequency
PD 2600 - 3400, radial 0 - 400 Hz noise
highpass filtering peak clipping
ED 800 - 1300 PD 1300 - 1900, frequency

lowpass filtering BD 100 - 3500 4
BD 1300 - 1900 400 - 800 Hz noise
APC PD 800 - 1300, radial
PD 1900 - 2600, frequency PD 400 - 800, frequency

Table 6.3.3-1 The homogeneous subsets of fifcoen distortions for four 4
objective measures. The subsets provide maximum correlation
between the objective measure and composite acceptability.
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third of the total number of distortions was, in fact, very good, with

correlation with composite acceptability exceeding 0.90 in all cases. These

facts promote the blind statistical approach as opposed to a heuristic approach

to choosing distortion subsets. Unfortunetly, whereas a heuristic approach 1q
, J

based on grouping common distortion types, by its very nature, yields

physically homogeneous subsets, the blind statistical approach yields subsets

ii-which are fragmented, containing small groups of diverse distortion types. This .

is largely unsatistfying, in that no broad conclusions can be drawn as to the

physical or perceptual nature of distortions which are best matched to the

U objective measure being investigated.

This is not to say that the statistical approach for grouping

distortions is entirely rejected, but merely that it is inconclusive based on

an initial set of experiments. The conclusion at this stage is, however, that

insight into the underlying mechanisms which cause an objective measure to be a

good match to a certain set of distortions, and hence permit the objective

measure make good estimates of subjective quality, are best found through othcr "

experimental approaches. In particular, it is felt that investigation of

objective measures for estimating parametric subjective qualities would yield

more insight into these issues.
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